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Abstract. This paper presents a robust and automated approach to generate un-
structured hybrid grids comprised of prismatic and tetrahedral elements for viscous
flow computations. The hybrid mesh generation starts from a triangulated surface
mesh. The prismatic elements are extruded based on the weak solutions of the
Eikonal equation to generate anisotropic elements at boundaries, and finally the
isotropic tetrahedral grids are generated to fill the rest of the domain. The pre-
sented hybrid meshing algorithm was validated using a ball valve model under both
steady and unsteady conditions.

1 Introduction

A great challenge for viscous flow simulations is to gain anisotropic elements
at the vicinity of the boundary area, especially for complex geometric solid
surfaces. When such domains are discretized, it is important that the grid fits
the boundaries well, and no conflict occurs during boundary mesh generation
processes. These issues become even more difficult to achieve with strongly
curved boundaries. The first issue relates to surface discretization or surface
mesh generation, which is not discussed in this paper.

To effectively avoid the warping of normal directions during boundary
meshing, it is critical to generate good-quality, high-aspect-ratio cells in the
vicinity of boundaries for wall-dominated phenomena. For this purpose, a
new approach based on a hybrid meshing methodology was proposed, in which
normal directions are calculated using a weak solution of the Eikonal equation
at each solid surface node of the boundaries to be propagated [1], [5], and [6].

The purpose of this paper is to validate the quality and effectiveness of the
proposed new hybrid mesh generation strategy using a ball valve model. This
paper is arranged as follows: Section 2 describes the problem to be solved.
Section 3 gives a brief introduction of the methodology used in this work.
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Section 4 illustrates the mesh results. Validation of the flow using the pre-
sented method is demonstrated in Section 5. Finally, Section 6 summarizes
the presentation.

2 Problem Description

In this paper, the steady and unsteady fluid flows in a three-dimensional (3D)
model of a ball valve are computed. Figure 1 shows the geometric image of a
pipe section including a ball valve. The valve is in the half open position. The
goal of the fluid flow analysis is to determine the velocity and the pressure of
the fluid as it exits the section.
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Fig. 1. Diagram of the pipe section

Topologically, the illustrated geometry is very simple and is equivalent
to a cylinder. Geometrically, this configuration has both convex and concave
shapes in its body. The most difficult consideration in this test case is how to
correctly calculate normal directions at the four singularity points as shown
in Figure 2. In this case, there are four surfaces that pass through and share
the singularity point. The traditional normal calculation method uses the geo-
metric information surrounding the point to be propagated, i.e., the weighted
average normal vectors of neighboring surfaces. The definition of the normal
vector may become ambiguous at special cases when normal direction is per-
formed in this way. For example, in Figure 2, the definition of normal vectors
for Surface 2 and Surface 4 are almost in opposite directions. It is difficult to
determine a compromise normal vector at this point using the average normal
vectors of neighboring surfaces.

Instead of using the traditional normal calculation, this paper uses a new
way to calculate normal vectors to prevent the above-mentioned problem. The
propagation strategy is described in Section 3, and the resulting meshes at
singularity points are presented in Section 4.

To analyze the flow pattern within this system, geometric sizes are set as
illustrated in Figure 1. The total length of the pipe section is 8.0 in and the
diameter at intake areas and valves is 1.0 in. Several physical characteristics
of the fluid are also pre-defined, including the flow rate at the inlet area as
0.5 in/s and the fluid as water.
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Fig. 2. Singularity point

3 Methodology

A primary challenge that exists in dealing with viscous flow concerns bound-
ary mesh generation. Many boundary mesh generation methods have been
proposed, and two important problems still exist. The first problem relates
to the potential self-intersection of the front as it grows from the original
surface. Local self-intersection may occur during propagation when the offset
distance is greater than the local curvature radius in concave regions. Global
self-intersection, on the other hand, arises when the distance between two
distinct points on the curve or surface reaches a local minimum. The second
difficulty, which is a more recent issue in offset construction, is the establish-
ment of a common connectivity between the original and offset surfaces.

Two major types of methods in dealing with the computation of offset
curves and surfaces are proposed: direct offset methods (DOM), which propa-
gate curves or surfaces directly based on a geometric construction; and indirect
offset methods (IOM), which cast the curve or surface offset problem into a
set of partial differential equations (PDE), in which, geometric information is
implicitly represented.

The advantage of DOM is that the entire or partial original parameter-
ization information can be preserved (which is a rather attractive merit to
boundary meshing), but the self-intersection problem cannot be avoided, and
extra care is required for removing self-intersections. The ability to effectively
eliminate these self-intersections is an important criterion in the applicability
of such methods in the context of an automated procedure. One represen-
tative attempt to eliminate self-intersections is the Advancing Front Method
developed by Pirzadeh [9] based on a grid-marching strategy. The solution is
to simply stop the advancement of the front before self-intersections occur.
Based on a similar marching idea, Sullivan [10] presented a self-intersection
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detection and removal algorithm in 2D. The 3D algorithm developed by
Guibault [8] eliminates self-intersections by first detecting tangled-loops and
then re-locating the points located within this area. In the algorithm described
by Glimm et al [11], a hybrid algorithm is applied to resolve self-intersections
by either re-triangulating triangles after removing unphysical surfaces, or re-
constructing the interface within each rectangular grid block in which crossing
is detected. Other types of techniques to eliminate self-intersections use the
properties of curves and surfaces, i.e., control points, derivatives, curvature,
etc. Blomgren [12], Tiller and Hanson [13], and Coquillar [14] approached the
problem by offsetting the control polygon for NURBS curves. Nachman [15]
extended this idea to propagate surfaces by offsetting control points. Piegl
and Tiller [16] sampled offset curves and surfaces based on bounds on the sec-
ond derivatives to avoid self-intersections. In the method developed by Sun et
al.[17], control points are repositioned to reduce local curvature in areas where
local self-intersections may occur, while the rest of the control points remain
unchanged. Farouki [18] described an algorithm which first decomposes the
original surfaces into parametric patches, and then uses Hermite interpolation
to construct the offset surfaces.

The representative work of IDM is the level set method developed by
Sethian and Osher [19, 20, 21, 22] which models front propagation problems as
a hyperbolic differential equation. In this method, self-intersection problems
can be avoided, but at the cost of completely losing the connectivity infor-
mation stored in the original geometric front. In general, to restore a similar
connectivity between the original and offset fronts is not a trivial task.

The present work proposes to use a boundary mesh generation method
discussed in [1], [5] and [6], which combines the advantages of the two types
of methods to build a new offset construction method that maintains para-
metric connectivity between the original and offset surfaces, and still avoids
self-intersections through the use of a weak solution to the shortest distance
problem. Figure 3 shows the outline of the proposed mesh generation process.
The details for each step are explained below.

Surface Mesh Generation

In the present hybrid meshing strategy, the surfaces are discretized into trian-
gles [23, 24]. Figure 4 shows the initial surface mesh used in this test. There are
no restrictions for the shape of surface mesh elements. The proposed bound-
ary mesh process can accept any type of elements, e.g., triangular, quad, etc.

Boundary Mesh Generation

There are four essential steps in the boundary meshing process: (1) calculate
the ¢ value for each grid node using the fast sweeping algorithm; (2) calculate
normal directions for the front grid nodes; (3) propagate front points along
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Fig. 3. Outline of mesh generation process

Fig. 4. Surface mesh

their local normal directions according to the given distance; (4) construct
blocks or the relative topological connectivity around the boundary area.

1. ¢ calculation
The present work proposes using the Offset Distance Equation, which is
a variation of the Eikonal equation, to model the surface offset problem.
This equation is given below:

Vo Vé—1
{¢:0 ifPerl (1)

where ¢ is the minimum Euclidean distance from an arbitrary point (P) in
the computational domain to the front (I") to be propagated. Equation 1
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expresses the condition for the shortest Euclidean distance from any space
position to the boundary. To enforce the boundary condition, ¢ = 0 when
P € I', exact values are first assigned to boundary nodes. Then, Gauss-
Seidel iterations with alternating sweeping orderings are used to update
the ¢s at the rest of the grid nodes. The details of this fast sweeping
algorithm can be found in [2].

Normal calculation

At each grid node, the normal vector is represented by the equation

Vo

"= Nl .

where n is the normal direction and ¢ is the weak solution of the Offset
Distance Equation. The term V¢/|V¢| can be viewed as a unit propaga-
tion speed in the normal direction: positive for an outward propagation,
and negative for an inward propagation.

Nodes propagation

The propagation equation at each node is:

x; = Fn (3)

Setting the propagation speed F' at each node to 1.0, the new propagated
points are obtained by iteratively solving Equation 3 using the fourth-
order Runge-Kutta method [3].

Connectivity construction

All the propagated points are sequentially connected according to their
original connectivities. The final propagation surface forms the input sur-
face mesh for the volume mesh generation process. Figures 5 and 6 show
the overall boundary mesh interface and the final boundary mesh of this
ball valve model.

Singularity points

Singularity points

Fig. 5. Boundary mesh interface
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Fig. 6. Boundary mesh

Internal Mesh Generation

After the boundary meshing process, a new surface mesh is generated, which
possesses exactly the same topological definition (triangle connectivity) as
the original solid surface. This new surface mesh becomes the input surface
mesh for tetra mesh generation. The entire computational domain defined by
this surface mesh is tessellated by isotropic tetrahedra [7, 4]. Figures 7 and
8 illustrate the final mesh generated for this model, and Figures 9 shows the
final mesh at the middle section.

Load Case: 1of 1

Maximum Value: Nat Available

Minimum Value: Not Available f T f 1 Y

Fig. 7. Final mesh (outside view)

4 Mesh validation

This section will only evaluate the quality of the resulting mesh for prismatic
elements.
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Fig. 8. Final mesh (internal view)

Fig. 9. Final mesh (in the middle section)

Volume Distribution

For validation, the original boundary is decomposed into 12 surfaces, and
three layers are generated after propagation. Table 1 illustrates the size of the
minimum and maximum volume for prismatic elements at each layer. From
this table, we can see that the volume of the prisms is reduced when marching
proceeds toward the internal direction.

Figure 10 illustrates partial volume distribution of the prismatic elements.
Because the normal directions at the surface mesh are defined toward the
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Table 1. Prismatic element volume range

Layer 1 Layer 2 Layer 3
Min. Size|Max. Size|Min. Size|Max. Size|Min. Size|Max. Size
4.776e-5 | 4.516e-4 | 2.374e-5 | 2.851e-4 | 1.504e-5 | 2.701e-4

outward direction of the domain, all the volume values are represented in
negative values. In this figure, blue color represents maximum volume, and
red represents minimum when absolute values are used. This figure shows
that the quality of the surface mesh can greatly affect the quality of the
boundary mesh. As a more uniform distribution is generated for the original
surface mesh, the quality of the prismatic elements improves. Table 2 shows
the overall volume range generated for this model.

-0.00045161 -0.0003643 -0.00027698 -0.00018967 -0.00010235 -1.5036e-05

Fig. 10. Volume distribution of prismatic elements

Table 2. Overall volume range

Type Min. Size|Max. Size
Prismatic element | 1.503e-5 | 4.516e-4
Tetrahedral element| 2.904e-5 | 1.802e-3

Aspect Ratio

The definition of aspect ratio for a prism element is:

averaged beam length

aspect ratio = 4
P averaged circumcircle radius 4)
Table 3 illustrates the histogram of aspect ratio for prismatic elements. From
the table we can see that the averaged aspect ratio is 0.012632. The reason
of this boundary mesh has such a small aspect ratio value is that the initial
surface mesh is very coarse. Refining the surface mesh size or increasing the

offset distance will help to increase the aspect ratio.
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Table 3. Histogram of aspect ratio

Range Number of prisms %
0.003443 - 0.007660 2241 42.395006
0.007660 - 0.011877 1010 19.107075
0.011877 - 0.016093 562 10.631858
0.016093 - 0.020310 423 8.002270
0.020310 - 0.024527 362 6.848278
0.024527 - 0.028743 293 5.542944
0.028743 - 0.032960 183 3.461975
0.032960 - 0.037177 68 1.286417
0.037177 - 0.041393 64 1.210745
0.041393 - 0.045610 80 1.513432

I total I 5286 100 |

H Averaged aspect ratio = 0.012623 H

Table 4. Histogram of normalized equiangular skewness

Value of normalized equiangular skewness||Number of prisms % Cell quality
0.000000 - 0.250000 710 13.431706| Excellent
0.250000 - 0.500000 3827 72.398789|  Good
0.500000 - 0.750000 391 7.396897 Fair
0.750000 - 0.900000 332 6.280742 Poor
0.900000 - 1.000000 26 0.491865 Bad
I total | 5286 | 100 | |

H Averaged normalized equiangular skewness = 0.16386

Normalized Equiangular Skewness

Thedefinitionofnormalizedequiangularskewness(NES)andcellquality
can be found in [25]. According to [25], 0 indicates the ideal element, 1 indi-
cates the bad element, and the acceptable NES range in 3D is 0-0.4. Table 4
illustrates the histogram of NES. From this table, we can see that the aver-
aged normalized equiangular skewness is 0.16386 which falls in the acceptable
range.

Sharp Corner Behavior

Theoretically, this boundary mesh generation method allows the propagation
to proceed to any distance without losing original connectivity at sharp cor-
ners. However, the cost is that some of the elements may degrade down to
zero-volume elements under certain circumstances.

For example, Figure 11 shows the propagation behavior at one sharp corner
in two dimensions. The boundary line is propagated toward its inner direction
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Fig. 11. Propagation behavior at a sharp corner

(from left to right), the propagation paths are skewed together after a certain
distance. The post-redistribution algorithm is required to avoid zero-volume
elements during the boundary mesh generation process.

Singularity Point Propagation Behavior

Figure 12 shows the propagation behavior at singularity points. The upper
figure illustrates the enlarged view of the boundary mesh interface at the part

Fig. 12. Mesh at singularity points
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with singularity points. The two bottom figures show the mesh at one singu-
larity point. From these figures, we can see that there is only one propagation
path at the singularity point, which is shared by the four surfaces’ meshes.
The reason we can get unique normal directions at the singularity points is
because the ¢ value at any point in the computational domain is a unique
value. This means the normal vector, %, is a unique value at any point of
the computational domain. Thus, in this case, the proposed method can avoid
the problem caused by the traditional normal calculation method.

5 Flow Analysis

The flow calculation is performed by ALGOR Professional Multiphysics,
which is finite element analysis (FEA) software developed by ALGOR, Inc.
Fluid enters the pipe, which is connected to a ball valve in the half-open po-
sition. Since the Reynolds number is very low - the viscous force is dominant
- a viscous layer on model boundaries is expected in the flow. Two analy-
ses (steady and unsteady flow) are performed using this mesh. Their velocity
and pressure analysis results are shown below, respectively. In the illustrated
results, dark blue color represents low value, and red represents high value.

Stead Flow

The flow at the inlet is set as a uniform velocity in the direction of the z-
axis. The expected velocity solution in the domain is shown in Figures 13
and 14. As predicted, a vortex flow pattern develops in the downstream area.
Figure 15 illustrates an enlarged view of Figure 14. Figure 16 is the internal
pressure distribution which is coincident with the anticipated result.

Unsteady Flow

In this case, the unsteady solver is applied. Figures 17 and 18 show the veloc-
ity result plotted by magnitude and vector, respectively. From these figures,
we can see that the final fluid velocity distribution demonstrates a similar be-
havior as the result calculated by the steady solver when a sufficient physical
time is predefined. Figure 19 is an enlarged view of Figure 18 which illustrates
the vortex pattern developed in the downstream area. Figure 20 shows the
velocity variation at node #2794, which is a singularity point. Its position is
illustrated in Figure 8. All the other nodes demonstrate the same convergent
behavior. After a certain iteration time, the variation of velocity at any com-
putational node converges to a steady value. Figure 21 illustrates the internal
pressure distribution of this model.
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Fig. 13. Velocity distribution (plot by magnitude)
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Fig. 14. Velocity distribution (plot by vector)
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Fig. 15. Vortex pattern (enlarged view
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Fig. 17. Velocity distribution (plot by magnitude)
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6 Conclusion

An automated hybrid grid generation method has been developed. The bound-
ary anisotropic elements are extruded along the normal directions which are
represented by the weak solution of the Eikonlal equation. The method was
applied to the ball valve model for both steady and unsteady fluid flow analy-
sis using ALGOR Professional Multiphysics software. The preliminary results
show that the proposed method practically generated well-qualified grid dis-
tribution for viscous flow.

Further research and development work needs to be done in the following
areas: 1) A higher-order numerical solution of the Eikonal equation is to be
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Fig. 19. Vortex pattern (enlarged view)
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Fig. 20. Velocity variation at node #2794
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Fig. 21. Pressure distribution

explored. The benefit of doing this is to get more accurate normal calculation
which will obviously strengthen control ability during the propagation process;
2) In this work, the propagation stops after three propagations in order to
avoid zero-volume elements. Thus, a mesh optimization procedure is to be
added as a complementary work of the presented method.
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