
On Refinement of Constrained Delaunay
Tetrahedralizations

Hang Si

Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
si@wias-berlin.de

Summary. This paper discusses the problem of refining constrained Delaunay
tetrahedralizations (CDTs) into good quality meshes suitable for adaptive numeri-
cal simulations. A practical algorithm which extends the basic Delaunay refinement
scheme is proposed. It generates an isotropic mesh corresponding to a sizing func-
tion which can be either user-specified or automatically derived from the geometric
data. Analysis shows that the algorithm is able to produce provable-good meshes,
i.e., most output tetrahedra have their circumradius-to-shortest edge ratios bounded,
except those in the neighborhood of small input angles. Good mesh conformity can
be obtained for smoothly changing sizing information. The algorithm has been im-
plemented. Various examples are provided to illustrate the theoretical aspects and
practical performance of the algorithm.

1 Introduction

Given a three dimensional mesh domain Ω represented by a piecewise linear
discretization of its boundary, i.e., ∂Ω is a set of vertices together with a set
of non-crossing segments and facets. The constrained Delaunay tetrahedraliza-
tions (CDT) T of ∂Ω is a tetrahedralization of its vertices and every segment
or facet of ∂Ω is represented as a union of faces of T . CDTs are useful struc-
tures that they not only respect the boundaries of mesh domains but also
retain many nice properties of Delaunay tetrahedralizations [19]. It is known
that the CDT of a given ∂Ω does not always exist in three dimensions [1].
By slightly refining ∂Ω with few additional points, the existence of a CDT is
guaranteed [14]. Provably-good algorithms for efficiently constructing CDTs
have been proposed [16, 18, 31]. A robust software implementation is publicly
available [32].

Generally, CDTs are not well suited for numerical simulations. The mesh
quality of CDTs is usually bad, e.g., there are elements which are very skinny
or flat and vertices having a big number of connected edges. Numerical meth-
ods such as finite element and finite volume methods have special demands
on their meshes. In order to obtain accurate results, the mesh elements must

510 H. Si

be “well-shaped”, e.g., having small aspect ratio. To reduce the interpolation
error, the largest angle of elements should be bounded [3, 17]. For capturing
the details of the solution field, the mesh must have smaller size in the region
where the solution or its gradient changes rapidly. While in order to reduce
the CPU time, the mesh must be as sparse as possible in the rest of the region.
In adaptive simulation which the physical problem is solved iteratively, the
desired mesh size in a single loop is usually obtained from the solution of the
previous iteration through an error estimator. It is convenient to introduce a
sizing function (or control space [6, 10]) to specify the desired size feature of
the problem. For example, the function specifies the (isotropic or anisotropic)
mesh size at any point in the domain.

The general adaptive mesh refinement problem can be described as fol-
lows: given an arbitrary boundary constrained tetrahedralization T and a siz-
ing distribution function H, find a set of additional points (so-called Steiner
points) and update T with these points, such that the resulting mesh only
has well-shaped elements and the mesh size conforms to H. In this paper, we
study a special case of the general problem by assuming that T is a CDT. We
refer to our problem as CDT refinement. The purpose is to develop an effi-
cient method that transfers any CDT into a good-quality mesh for adaptive
numerical simulations (see Fig. 1 for an example).

Fig. 1. A CDT of a flange (left), a refined mesh (middle), and the finite volume
solution (pdelib [33]) of a static heat equation (right). The refined mesh (20K nodes,
76K tets) was obtained within 3 seconds (on Intel(R) Xeon(TM) CPU 3.60GHz).

On refining CDTs, several merits of the CDT can be exploited. The bound-
aries of the input domain are respected and refined simultaneously, there are
no needs to recover them during the refinement and extract them later. More-
over, the exterior boundaries of the mesh domain are never overrefined. Hav-
ing the properties close to Delaunay tetrahedralizations, the searching for the
nearest feature of any point is local, no additional data structure is needed.
It is efficient to classify critical input features (e.g., small input angles) for re-
fining or protecting. However, CDT refinement does not guarantee to remove
all badly-shaped elements. To obtain a high-quality computational efficient
mesh, after the refinement a mesh smoothing (or mesh optimization) step is
necessary.

On Refinement of Constrained Delaunay Tetrahedralizations 511

The Delaunay refinement methods pioneered by Chew [4, 5], Ruppert [8],
and Shewchuk [13] are well known for having theoretical guarantees on the
quality of mesh elements and producing nicely graded meshes, i.e., the mesh
edges are short at small input features and gradually increasing to bigger ones.
Moreover, the resulting mesh is conforming Delaunay, which means the edges
(or faces) of the dual Voronoi diagram are orthogonal to the faces (or edges)
of the mesh. This is a very useful property for finite volume meshes [11, 25].
In three dimensions, only one class of badly-shaped tetrahedra called slivers
(a sliver has no short edges but nearly zero volume) can survive. The mesh
smoothing is essentially used to remove slivers [20, 23, 24]. The main limitation
against the elegance of the basic scheme is that no input angle should be
smaller than 90◦. This condition is not likely to be satisfied in most of the
realistic problems. Much work [15, 28, 21, 22] has gone into removing the
restrictions. However, most of these methods do not take an arbitrary sizing
functions into account.

The algorithm of Miller, et al. [11] finds a well-spaced point set conforming
to the domain boundary by sphere-packing, then triangulate the point set by
the Delaunay criterion. Recently, Oudot, et al [30] designed a volume meshing
algorithm which greedily samples the interior and the boundary of the domain
using a similar Delaunay refinement scheme. Both algorithms support user-
defined sizing functions. While these methods are not designed for refining
CDTs. In stead of that, the boundaries are unknown on input and have to be
enforced by the refinement.

Another class of methods [7, 9] which is popularly used for mesh refining
works in two parts: (1) point generation using the sizing information, and
(2) point insertion by the constrained Delaunay criterion. In part (2), some
points are filtered due to the saturation of the near points. This approach is
able to quickly generate a number of Steiner points well conforming to the
given sizing function and can be parallelized easily. From the theoretical point
of view, this approach does not guarantee mesh quality. It heuristically relies
on mesh optimization.

In this paper, a practical algorithm that builds on many previous work [7,
8, 13, 30] is proposed. This algorithm, referred to as constrained Delaunay
refinement, generates an isotropic mesh corresponding to a sizing function
H which can be either user-specified or automatically derived. The CDT is
refined incrementally by appropriately inserting points into it. At each step,
a new point v is generated by the basic Delaunay refinement scheme, v is
inserted only if the local mesh is sparse according to H. The process terminates
when no new point can be inserted. This algorithm inherits the theoretical
guarantees of the basic Delaunay refinement [8, 13]. It generates provably-
good quality mesh inside the domain. Those remaining low quality elements
are located in the neighborhood of small input angles. This algorithm has
been implemented. Practical experiments show that it works both robustly
and efficiently. The results validate our claim on the quality of the output
tetrahedra. Good mesh conformity is observed for smooth sizing functions.

512 H. Si

The remainder of this paper is organized as follows. The proposed algo-
rithm is described in section 2. Section 3 provides theoretical analysis regard-
ing this algorithm. Two approaches for specifying a sizing function are dis-
cussed in section 4. Various refinement examples as well as numerical results
are presented in section 5. Conclusions are stated in section 6.

2 Constrained Delaunay Refinement

In this section, the algorithm for refining CDTs is presented. It behaves like
the basic three dimensional Delaunay refinement algorithm of Shewchuk [13],
i.e., finds the badly-shaped tetrahedra and eliminates them by inserting their
circumcenters. However, the insertion of circumcenters is restricted by the
local mesh sizing information specified on input. We refer to this algorithm
as constrained Delaunay refinement.

2.1 Definitions

The input of this algorithm is a CDT T of a piecewise linear complex X [11].
The boundaries of X (segments and facets) are represented as a union of sub-
segments and subfaces in T (see Fig. 2). Any tetrahedron τ in T is constrained
Delaunay, i.e., the circumsphere of τ encloses no vertex of X that is visible
from the inside of τ , the visibility is blocked by the boundaries of X [16]. If τ
is constrained Delaunay, it may not be Delaunay. While if τ has no face which
is subface, it is Delaunay.

Let H(p) > 0 be a sizing function defined at any point p in X that specifies
the desired lengths of edges connecting at p. H is isotropic if the edge length
does not vary with respect to the directions at the point, otherwise, it is
anisotropic. In the scope of this paper, we assume H is isotropic. An ideal
sizing function is defined analytically at any point of X. In most cases, H is
given discretely at some points in X, the size of other points is obtained by
interpolation. We will further discuss the sizing function in section 3.

The radius-edge ratio of a tetrahedron τ is the ratio of the circumradius to
the shortest edge of τ . If τ has a large radius-edge ratio, then it must be badly-
shaped, e.g., it is skinny or flat. However, it is not vice versa. The slivers can

a facet of X

Fig. 2. Left: a piecewise linear complex (PLC). The shaded area highlights one of
its facets. Right: a constrained Delaunay tetrahedralization (CDT) of the left PLC.
The surface mesh of the CDT consists of subsegments and subfaces.

On Refinement of Constrained Delaunay Tetrahedralizations 513

have fairly small radius-edge ratio although they are very flat. Nevertheless,
radius-edge ratio is effective in classifying the shapes of tetrahedra.

In three dimensions, a subsegment or subface can have infinitely many
circumspheres. However, its smallest circumsphere (i.e., the diametric cir-
cumsphere) is unique. In the scope of this paper, we tacitly use the term
circumsphere to mean the unique one. A subsegment or a subface is said to
be encroached if a vertex lies inside or on its circumsphere.

2.2 The Algorithm

Given a CDT T to be refined, a sizing function H, a radius-edge ratio bound
B, and two parameters α1, α2. The algorithm incrementally adds Steiner
points into T and updates T into a refined mesh.

At each step, a Steiner point v is generated by the basic Delaunay refine-
ment scheme, i.e., v is found by the following three point generating rules.

R1 if a subsegment s is encroached, then v is the midpoint of s;
R2 if a subface f is encroached, then v is the circumcenter of f . However, if v

encroaches upon some subsegments, reject v, use R1 to find a v on one of
the encroached subsegments.

R3 if a tetrahedron t satisfies one of the two cases:
(1) t has radius-edge ratio greater than B, or,
(2) there is a corner p of t, such that α1H(p) < r, where r is the radius of

the circumsphere of t,
then v is the circumcenter of t. However, if v encroaches upon any subseg-
ment of subface, reject v, use R1 or R2 to find a v on one of the encroached
subsegments or subfaces.

Once the point v is found, the point accepting rule decides whether or not
v can be inserted into the mesh. Let P be a set of vertices collected as follows:

• If v is found by R1, P has two endpoints of s.
• If v is found by R2, P has the endpoints of subfaces which v is intended

to split.
• If v is found by R3, P has the endpoints of tets which v is intended to

split.

Then v can be inserted if α2H(p) < |v − p|, for all p ∈ P , where | · | is the
Euclidean distance. Otherwise, v is not inserted.

If v passes the point accepting rule, it is inserted into the current mesh
and the local mesh of v is retriangulated according to the Delaunay criterion.

Remark. R3-1 tests if t has bad quality, and R3-2 checks the H-conformity
of the corners of t. R3-1 has priority higher than R3-2, that is, R3-2 is triggered
when all tets has radius-edge ratio larger than B.

In the point accepting rule, if v is found by R1 or R2, only the endpoints of
the subsegment or subfaces of the same facet where v lies on have the right to

514 H. Si

accept or reject v. It appears that v can be too close to some existing vertices
in terms of H, i.e., there exists a point p
∈ P , such that α2H(p) > |v−p|. We
will show in the next section that the distance |v − p| is bounded in terms of
α2 and H.

3 Analysis

The central idea of the algorithm is - only inserts a Steiner point when the local
mesh of the point is sparse. The sparseness is indicated by the values of the
sizing function at its adjacent vertices. In isotropic case, one can assume each
vertex p of the mesh is surrounded by two virtual balls, one sparse ball with
radius α1H(p), and one protect ball with radius α2H(p). The space outside
the sparse ball of p is sparse from the viewpoint of p, while the space inside
the protect ball of p is free of Steiner points. Notice that when α1 → +∞ (i.e.,
no sparse space) and α2 → 0 (i.e., no protect ball), it is the basic Delaunay
refinement algorithm [13].

In the following, we provide conditions on the sizing function H, and the
parameters α1, α2, and B to ensure the theoretical guarantees of this algo-
rithm. Specifically, we will show:

• The termination of the algorithm only depends on α2.
• The mesh quality is governed by both B and α2.
• The properties of H will influence the mesh conformity.
• The mesh size can be adjusted by α1.

For each output vertex v, its parent pv is defined as follows: if v is an input
vertex, pv is the closest output vertex to v; if v is an inserted vertex, let pv

be the closest vertex to v immediately after v is inserted, if there are several
such vertices, choose the one which is the most recently inserted. Notice that
pv may not be the closest output vertex to v.

Given a PLC X, the local feature size [8] lfs(p) at any point p is the radius
of the smallest ball centered at p that intersects two nonincident features of
X (where each of two features might be a vertex, segment or facet). lfs() is
defined for all points in X, it satisfies a 1-Lipschitz condition, i.e., for any two
points u and v in X, lfs(v) ≤ lfs(u) + |u− v|.

We use the definition of input angle from Cheng et al. [21]. Simply saying,
an input angle of the PLC X is any angle that formed by two incident seg-
ments, or a segment and a facet, or the dihedral angle formed by two incident
facets.

Lemma 1 shows that in the output mesh, the length of the shortest edge
of each vertex is bounded.

Lemma 1. Let v be a vertex of the output mesh, let p be the vertex closest
to v, then |v − p| ≥ min{α2H(v), Cα2H(pv), lfs(v)}, where C = sinθm/

√
2,

and θm is the smallest acute input angle.

On Refinement of Constrained Delaunay Tetrahedralizations 515

Proof. We prove this lemma by enumerating all cases of the presence of v and
p and deriving the bounds on each of them.

Assume v is an input vertex, then |v−p| = |v−pv| ≥ α2H(v). Now assume
p is an input vertex, then |v − p| ≥ lfs(v).

In the following, we examine the cases which both v and p are inserted
vertices. The notation p ≺ v means p is inserted before v.

Assume v is found by R1. Let s be the segment on which v lies.

(1) Assume p is found by R1. Let s′ be the segment on which p lies.
If s and s′ are coincident, if p ≺ v, then |v− p| = |v− pv| ≥ α2H(pv), else,
|v − p| ≥ α2H(v).
If s and s′ are disjoint, then |v − p| ≥ lfs(v).
If s and s′ share a common input vertex e, let θ be the angle formed
by s and s′, θ < 90◦ (since p is the closest vertex to v), then |v − p| ≥
|v − e|sinθ ≥ |v − pv|sinθ ≥ α2H(pv)sinθm (see Fig. 3 (a)).

(2) Assume p is found by R2. Let f be the facet on which p lies.
If s and f are disjoint, then |v − p| ≥ lfs(v).
If s and f share at one common input vertex e, let θ be the angle formed by
s and line segment eq, θ < 90◦ (see Fig. 3 (b)), then |v−p| ≥ |v−e|sinθ ≥
|v − pv|sinθ ≥ α2H(pv)sinθm.
If s belongs to f (see Fig. 3 (c)). Suppose p ≺ v, then p does not encroach
upon the segment v splits, hence |v − p| > |v − pv|, so this case is not
possible (since pv is closer to v than p is). The remaining case is v ≺ p,
then |v − p| ≥ α2H(v).

(3) Assume p is found by R3. Similar to the last case in (2) (Fig. 3 (c)), the
only possible case is v ≺ p, then |v − p| ≥ α2H(v).

vqs

fp

v

e

q

p
s’

s v

e

q

p

s

f

(a) (b) (c)

Fig. 3. Suppose v is found by R1, vp is the shortest edge connected at v. q illustrates
the possible location of the parent of v.

Assume v is found by R2. Let f be the facet on which v lies:

(4) Assume p is found by R1. Let s be the segment on which p lies.
If s and f are disjoint, then |v − p| ≥ lfs(v).
If s and f intersect at one input vertex e. Let θ be the input angle formed
by s and f , θ < 90◦ (refer to Fig. 3 (b), switch the positions of v and p).
Then |v − p| ≥ |v − e|sinθ ≥ |v − pv|sinθ ≥ α2H(pv)sinθm.
If s belongs to f (refer to Fig. 3 (c), switch the positions of v and p). If

516 H. Si

p ≺ v, then |v − p| ≥ |v − pv| ≥ α2H(pv), else, let q ∈ s be either an
input vertex or q ≺ v (see below), |v − p| ≥ |v − q|/

√
2 ≥ |v − pv|/

√
2 ≥

α2H(pv)/
√

2.
Now we show that such q must exist. It can be found by the following
iterative process: initialize i := 0, q0 := p; (i) let qi+1 be the endpoint of
the subsegment split by qi which is closer to v; if qi+1 is an input vertex
or qi+1 ≺ v, then q := qi+1 and return; else, i := i + 1 and goto (i). The
iterative process will terminate since R1 has priority higher than R2.

(5) Assume p is found by R2. Let f ′ be the facet on which p lies.
If f and f ′ are coincident. If p ≺ v, then |v − p| ≥ |v − pv| ≥ α2H(pv),
else, |v − p| ≥ α2H(v).
If f and f ′ are disjoint, then |v − p| ≥ lfs(v).
If f and f ′ intersect at an input vertex e (refer to Fig: 3 (b)), let θ be the
input angle formed by the two facets at e, θ < 90◦, |v− p| ≥ |v− e|sinθ ≥
|v − pv|sinθ ≥ α2H(pv)sinθm.
If f ′ and f intersect at a common segment s, let θ be the input dihedral
angle formed by f and f ′, θ < 90◦, let q be the vertex on s which is the
closest one to v, |v− q| ≥ α2H(pv)/

√
2 (using the same arguments in case

(4)), then |v − p| ≥ |v − q|sinθ ≥ α2H(pv)sinθ/
√

2.
(6) Assume p is found by R3.

If p ≺ v, let q ∈ f be either an input vertex or p ≺ v (such q can be found
by using the similar iterative process in case (4) and the fact R2 has higher
priority than R3), then |v−p| ≥ |v−q|/

√
2 ≥ |v−pv|/

√
2 ≥ α2H(pv)/

√
2,

else, |v − p| ≥ α2H(v).

Assume v is found by R3. If p ≺ v, then |v−p| = |v−pv| ≥ α2H(pv), else,
we have the following cases:

(7) Assume p is found by R1. Let s be the segment on which p lies, similar
to case (4), let q ∈ s be either an input vertex or q ≺ v, then |v − p| ≥
|v − q|/

√
2 ≥ |v − pv|/

√
2 ≥ α2H(pv)/

√
2.

(8) Assume p is found by R2. Let f be the facet on which p lies, similar to
case (6), let q ∈ f be either an input vertex or q ≺ v, then |v − p| ≥
|v − q|/

√
2 ≥ |v − pv|/

√
2 ≥ α2H(pv)/

√
2.

(9) Assume p is found by R3, then |v − p| ≥ α2H(v).

In the worst case, which is in case (5), C = sinθm/
√

2.

Theorem 1 which guarantees the termination of the algorithm is a directly
outcome from the above Lemma.

Theorem 1. The algorithm terminates if α2 > 0.

Next, we consider the output mesh quality. Our goal is to show that the
algorithm is able to create a mesh with most of the tetrahedra have their

On Refinement of Constrained Delaunay Tetrahedralizations 517

radius-edge ratio bounded, only few poor quality tetrahedra remain in well
defined locations.

We say a tetrahedron is skinny if its radius-edge ratio is smaller than B.
A vertex is sharp if there are two segments or a segment and a facet sharing
at it form an acute angle; a segment is sharp if it contains a sharp vertex or
there are two facets sharing it form an acute dihedral angle; a facet is sharp
if it contains a sharp segment or there is another segment or facet adjacent
to it forming an acute angle or acute dihedral angle.

Theorem 2. Suppose the quality bound B is larger than 2. Then there exists
a constant D, such that when α2 = D, most of the output tetrahedra have a
radius-edge ratio smaller than B. The circumcenter of any skinny tetrahedron
is within distance

√
2α2H(p), where p is a sharp vertex or a vertex inserted

on a sharp segment or a sharp facet.

Proof. If there is no acute input angle and B > 2, the basic Delaunay refine-
ment algorithm guarantees that the distance of any output vertex v to its
nearest neighbor is at least lfs(v)

DS+1 , where DS > 1 is a fixed constant (Theorem
6 in [13]). The theorem can be proved if D is chosen sufficiently small such
that the inequality

D <
lfs(v)

H(v)(DS + 1)

is hold for any output vertex v, i.e., the protect ball of v is always empty and
no later generated vertex will be rejected.

Assume there are acute input angles. The theorem can be proved by the
following procedure. At initialization, choose D0 to be an arbitrary positive
value, and run the constrained Delaunay refinement algorithm with α2 := D0.
In the output mesh, there may have skinny tets. Let t be a remaining poor
quality tet, ct be its circumcenter. t can be categorized into one of the four
sets listed below:

• Φ1, ct lies outside the mesh and does not encroach upon any segment or
subface.

• Φ2, ct lies inside the mesh and does not encroach upon any segment or
subface.

• Φ3, ct encroaches upon a segment (or a subface) which is non-sharp.
• Φ4, ct encroaches upon a sharp segment (or a sharp subface).

Consider a tet t ∈ Φ1, there exists at least one segment s (or one subface f)
which is encroached by a corner of t, i.e., s (or f) is non-conforming Delaunay,
and s (or f) is not split because its circumcenter cs is rejected by the point
accepting rule, i.e., cs lies inside at least one of the protecting balls of its
corners.

We show one special case that such segment exists, other cases can be
shown similarly. Assume one face abc of t lies on a facet F (see Fig. 4), bc be
the longest edge of abc. Then the circumcircle C of abc must intersect some

518 H. Si

c t
a

b

c

d

e

d’

e’

CF

Fig. 4. t ∈ Φ1, one special case of the existence of an encroached segment. In the
above figure, abc is a face of t and lies inside a facet F , de is the boundary segment
of F which is encroached by a.

boundary segment de of F . Moreover, both d and e lie outside or on C (since
abc is a Delaunay subface on F). Let the intersections of C and de be d′ and
e′, then � dae ≥ � d′ae′ ≥ 90◦. Hence segment de is encroached by a.

t will be eliminated if s (or f) is split by the constrained Delaunay refine-
ment. This can be achieved by shrinking the protect balls of the endpoints of
s (or f) such that its circumcenter lies outside all of them. It is possible to
choose a sufficiently small D1 > 0, such that all tets of Φ1 can be removed by
running the algorithm with α2 := D1. The newly inserted vertices may create
new poor quality tets which can be classified into Φ2, Φ3, and Φ4.

Consider a tet t ∈ Φ2, ct is rejected by some protect balls of existing
vertices at the neighborhood of t. t can be eliminated by shrinking these
protect balls such that ct lies outside all of them. It is possible to choose a
sufficiently small D2, 0 < D2 ≤ D1, such that no t ∈ Φ2 can survive after
running the algorithm with α2 := D2. There are possibly remaining poor
quality tets of Φ3 and Φ4.

Consider a tet t ∈ Φ3, the circumcenter of s (or f) is rejected by lying
inside some protect balls of its endpoints. s (or f) will be split by shrinking
these protect balls. Consequently, either t gets eliminated during the split of
s (or f), or ct does not encroach any segment or subface and is accepted for
insertion, or t becomes a tet of Φ2. It is possible to choose a sufficiently small
D3, 0 < D3 ≤ D2, such that no t ∈ Φ2 ∪ Φ3 can survive after running the
algorithm with α2 := D3. Now the possibly remaining poor quality tets can
only belong to Φ4.

If t ∈ Φ4, the circumcenter cs of s (or f) is rejected by lying inside
some protect balls of its endpoints (see Fig. 5). Let p be such a vertex, then,
|ct − cs| < |cs − p| < α2H(p). Hence |ct − p| <

√
2α2H(p).

Next, we consider the mesh conformity with respect to the sizing function
H. For each vertex v, let S(v) and L(v) denotes the lengths of the shortest
edge and the longest edge among all edges containing v, respectively. We are
interesting the values S(v)

H(v) and L(v)
H(v) . Theorem 3 gives bounds on those output

vertices at where the local mesh quality is met.

On Refinement of Constrained Delaunay Tetrahedralizations 519

c t

c s

p

t

s

Fig. 5. t ∈ Φ4, the circumcenter ct of t encroaches upon the circumsphere of segment
s. The circumcenter cs of s lies inside the protecting ball of one of the endpoint p.

Theorem 3. Suppose all tets containing v have their radius-edge ratio bounded,
and the rule R3-2 is not applicable on any of them, then:

(i) S(v)
H(v) ≥ min{α2, Cα2

H(pv)
H(v) , lfs(v)

H(v) }.
(ii) L(v)

H(v) ≤ 2α1;

Proof. The first claim follows directly from Lemma 1. Let t be a tet which
contains v and has the longest edge of length L(v), let r be the circumradius
of t, then: L(v)

2 ≤ r ≤ α1H(v) =⇒ L(v)
H(v) ≤ 2α1.

When the local mesh quality is satisfied, and the mesh is saturated, The-
orem 3 shows that the mesh conformity at each vertex v is related to H, α1,
α2 and lfs. Specifically,

• H, α2, and lfs together decide the lower bound of the mesh conformity.
• The term H(pv)

H(v) indicates that H should not vary too much in v’s neighbor-

hood, e.g., H is 1-Lipschitz. The term lfs(v)
H(v) indicates that H is constrained

by lfs which is dependent upon the boundary of the CDT.
• α2 plays a contradictory role between mesh quality and mesh conformity.

It needs to be small in order to guarantee the mesh quality. While it is
desired to be as large as possible for the good mesh conformity.

• α1 limits the length of the longest output edge connected at v. It directly
controls the result mesh size, i.e., the smaller it is, the bigger the mesh
size will be.

4 Specify Sizing Functions

Our algorithm needs a sizing function H which is defined over the mesh do-
main and specifies the local mesh size, e.g., the desired edge length or element
density. The data of a sizing function can be based on either a priori known
information or a posteriori error estimation.

520 H. Si

This section describes two approaches for specifying a sizing function. If
no sizing function is given by the user, it can be automatically derived by
using the boundary data of the CDT. Alternatively, a background mesh whose
vertices contain the size information can be supplied along with the CDT.

4.1 Sizing Function Derived from CDT

It is possible that an appropriate sizing function may not available in advance.
For example, on the first time to create a mesh for simulation, there is not
much mesh size information available1. In such case, H is derived from the
CDT T of a PLC X by the following approach:

• if p is not a Steiner point, then H(p) := lfs(p);
• else H(p) is interpolated from its adjacent vertices by the Shepard in-

terpolation, where the weights are set to be the second inverse power of
distances, i.e.,

H(p) :=
∑n

i=1 |p− vi|−2H(vi)∑n
i=1 |p− vi|−2

.

where vi is a vertex connecting to p in current mesh.

The use of Shepard interpolation [2] has the effect that the closest node
has the biggest influence on the size of the Steiner point. An example is shown
in Fig. 6.

Fig. 6. Sizing function derived from local feature sizes and Shepard interpolation.
The left two pictures show a CDT and the local feature sizes at its vertices. On the
right, the refined mesh and the obtained sizing function are shown.

The above approach is simple enough in practice. If p is a vertex of the
initial CDT, lfs(p) can be efficiently computed by searching locally the small-
est distance of the nearest vertex, subsegment, and subface. Another feature
is that the sizing function is computed on the fly, i.e., each Steiner point gets
its size after it is inserted. There is no need to store H. The mesh quality

1Although some pre-knowledge of the problem may help for deciding the size of
the mesh on its boundary. However, it is generally hard to decide the appropriate
mesh size inside the volume in advance.

On Refinement of Constrained Delaunay Tetrahedralizations 521

can be improved by choosing an appropriate value for α2. There are simi-
lar approaches [7, 9, 29] but they require additional data structures, e.g., a
background mesh or a KD-tree.

4.2 Use of a Background Mesh

If H is known in advance, the most popular and flexible way for specifying H is
through a background mesh whose vertices or elements encode the information
about the desired mesh size. The background mesh can be any grid structure
(such as uniform grid or Octree) or an unstructured mesh (such as CDT).

We use an unstructured mesh as the background mesh. Hence it can be
the initial CDT or a tetrahedral mesh obtained at the previous iteration in an
adaptive process. At any point p of the current mesh, H(p) can be obtained
by means of interpolation in the background mesh:

• locate p in a tetrahedron t which contains p;
• compute H(p) as the P 1 interpolation of the sizes H(pi) at the vertices pi

of t.

5 Examples

The algorithm has been integrated in TetGen – a quality tetrahedral mesh
generator [32]. The input can be either a PLC or a CDT. A sizing function
H can be optionally specified using a background mesh. If H is not available,
it will be automatically generated by the approach discussed in section 4.1.
Parameters B, α1, and α2 are all adjustable by command line options. Each
of them has a default value (B = 2.0, α1 =

√
2, α2 = 0.5) if it is not specified

on input.
The next two examples (Figs. 7 and 8) were built for analysis purpose.

We study the effects of using different combinations of the parameters (B,
α1, and α2) and compare the results according to the theoretical analysis of
section 3.

Figure 7 are serials of meshes created by various combinations of (B,α2).
The sizing functions are automatically derived. Remaining poor quality tets
are plotted for selected meshes. The mesh size of each mesh is given in the
form nv/nt/nb, where nv – the number of nodes, nt – the number of tets,
and nb – the number of remaining poor quality tets. The results validate our
claim (Theorem 2) on the mesh quality, i.e., for an appropriate α2, most of
tets have bounded radius-edge ratio, poor quality tets are all close to small
input angles. Notice that few slivers may remain in the volume, they can be
removed by a mesh smoothing step.

Figure 8 show three meshes of a unit cube obtained by specifying different
sizing functions H through background meshes. The Hs used in these meshes
are piecewise smooth functions. The parameters are chosen as follows: B =

522 H. Si

(2.0, 0.5) (2.0, 0.2) (2.0, 0.1) (2.0, 0.1).
262/765/52 536/1526/124 1022/2963/240 −/ − /240.

(1.4, 0.2) (1.2, 0.2) (1.1, 0.2) (1.1, 0.2).
692/2064/124 964/3082/124 1901/7233/126 −/ − /126.

Fig. 7. Given a CDT with small input angles, the above pictures are different meshes
refined by using various combinations of parameters (B, α2) and automatically de-
riving sizing functions.

Mesh 1 Mesh 2 Mesh 3
12248/73693/0 22587/139484/0 108389/688768/0

Fig. 8. Meshes created by specifying different sizing functions.

2.0, α1 =
√

2, and α2 = 0.05. Table 1 lists the statistics of the ratios S(v)
H(v)

and L(v)
H(v) (defined in Theorem 3) at mesh vertices. The statistics show that

the meshes are well conformed to the corresponding Hs.
In the following, some selected examples which illustrate the practicabil-

ity of this algorithm are presented (Fig. 10 to Fig. 12). The complexity of the
input geometries2 challenges both the robustness and efficiency of the algo-

2Available from Inria’s large repository: http://www-rocq1.inria.fr/gamma

On Refinement of Constrained Delaunay Tetrahedralizations 523

Table 1. Statistics of the ratios Sv = S(v)
H(v)

and Lv = L(v)
H(v)

(defined in Theorem 3)
at mesh vertices of the meshes shown in Fig. 8.

Mesh 1 Mesh 2 Mesh 3
Sv Lv Sv Lv Sv Lv

< 0.5 0 0 0 0 0 0

0.5 − 1/
√

2 58 0 0 0 0 0

1/
√

2 − 1 3221 1 283 0 0 0

1 −
√

2 15062 113 10778 14 1927 49√
2 − 2 4246 3867 1187 1044 94186 12594

2 − 2
√

2 0 18606 0 11190 12276 95746

> 2
√

2 0 0 0 0 0 0

Table 2. Statistics of mesh sizes and CPU times (examples in Fig. 9 to Fig. 11).
Tested on Intel(R) Xeon(TM) CPU 3.60GHz, 2G Memory.

Input CDT Quality Mesh CPU time
nv nt nv nt (sec.)

747 6,364 19,626 300,712 1,783,953 36.80
Peugeot 7,689 20,689 474,678 2,706,469 84.91
Engine 59,233 190,768 410,288 1,506,073 135.06

rithm. Table 2 shows the statistics on the size of input and resulting meshes,
the CPU time for refining CDTs. Figure 9 are radius-edge ratio histograms of
the resulting meshes.

6 Conclusion and Discussion

In this paper, the problem of refining constrained Delaunay tetrahedraliza-
tions is raised in the context of adaptive numerical simulations. A practical
algorithm is proposed. This algorithm inherits the simplicity and elegance of
the basic Delaunay refinement scheme. While it has no restriction on the an-
gles of the inputs and it takes a user-specified sizing function into account.
The algorithm refines a CDT by fast distributing additional points (Steiner
points) in its sparse area. Theoretical analysis shows that the mesh quality can
be provably-good, good mesh conformity can be obtained for smooth sizing
functions.

There are possibilities to improve the mesh quality and reduce the mesh
size. Notice that the the circumcenter used in basic Delaunay refinement
scheme might not be the best position for a Steiner point. Alternatively, the
off-center [27] may be considered.

Although this algorithm is proposed for refining CDTs, it can be used
to refine any boundary constrained tetrahedralizations (non-CDTs) as well.
Notice that the point generating rules and the point accepting rule do not
rely on the type of inputs. A CDT is eligible for an efficient implementation

524 H. Si

0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 0.5 1 1.5 2 2.5 3

747: radius-edge ratio vs tets

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

0 0.5 1 1.5 2 2.5 3

Peugeot: radius-edge ratio vs tets

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

0 0.5 1 1.5 2 2.5 3

Engine: radius-edge ratio vs tets

Fig. 9. Radius-edge ratio histograms (examples in Fig. 10 to Fig. 12).

of these rules. It is not the case for arbitrary non-CDTs that required features
may not be found locally. While a background grid (such as Octree) may be
used.

It would be interesting to adapt the algorithm for anisotropic H. For this
purpose, the usual ways of measuring edge lengths, updating locally Delaunay
property around Steiner points, and the interpolation of H must be extended
by anisotropic manners [10].

Acknowledgements

This work is supported by the “pdelib” project of Weierstrass Institute for
Applied Analysis and Stochastics. Thanks to Dr. Klaus Gärtner for many
helpful discussions. Thanks to the reviewers for the valuable suggestions and
comments.

References

1. Schönhardt E (1928) Über die Zerlegung von Dreieckspolyedern in Tetraeder.
Mathematische Annalen 98:309–312

2. Shepard D (1968) A Two-Dimensional Interpolation Function for Irregularly
Space Data. In: Proc. 23th Nat. Conf. ACM, 517–524.

On Refinement of Constrained Delaunay Tetrahedralizations 525

Fig. 10. 747: The geometry: a plane in the middle of a bounding box, the internal
region of the plane is not meshed. H is specified on the CDT of the input PLC. The
size is simply chosen such that H is small at the surface of the plane and big on
the bounding box. Parameters: B = 2.0, α1 =

√
2, and α2 = 1/

√
2. Top left and

right, two different views of the resulting mesh. Bottom left, an overview of the
remaining poor quality tets in the mesh (which are all close to the surface mesh of
the plane). Bottom right, a detailed look of the bad tets on one of the wings.

3. Babuška I, Aziz, A K (1976) On the Angle Condition in the Finite Element
Method. SIAM Journal on Numerical Analysis 13(2): 214–226.

4. Chew P L (1989) Guaranteed-Quality Triangular Meshes. Technical Report
TR-89-983, Department of Computer Science, Cornell University.

5. Chew P L (1997) Guaranteed-Quality Delaunay Meshing in 3D. In: Proc. 19th
Annu. Sympos. Comput. Geom., 274–280.

6. George P L (1991) Automatic Mesh Generation. Application to Finite Element
Methods. Wiley.

7. Weatherill N P, Hassan O (1994) Efficient Three-Dimensional Delaunay Trian-
gulation with Automatic Point Creation and Imposed Boundary Constraints.
Int. J. Numer. Meth. Engng 37: 2005–2039.

8. Ruppert J (1995) A Delaunay Refinement Algorithm for Quality 2-Dimensional
Mesh Generation. J Algorithms 18(3): 548–585

526 H. Si

Fig. 11. Peugeot: Test case of incompressible Navier Stokes simulation (solved by
AcuSolve [34]). Parameters: B = 2, α1 =

√
2, and α2 = 1/

√
2. Top left, the

geometry - a car body inside a channel, the internal of the car is not meshed. Top
right, the background mesh (a CDT) used for specifying H which is small on the
car surface and big on the wall of the channel. Middle, a view of the resulting mesh.
Bottom, the resulting velocity field.

9. Frey P J, Borouchaki H, George P L (1996) Delaunay Tetrahedralization Using
an Advancing Front Approach. In: Proc. of 5th Intl. Meshing Roundtable.

10. Frey P J, George P L (2000) Mesh Generation. Application to Finite Elements.
Hermès, Paris.

11. Miller G L, Talmor D, Teng S H, Walkington N, Wang H (1996) Control Vol-
ume Meshes using Sphere Packing: Generation, Refinement and Coarsening.
In: Proc. of 5th Intl. Meshing Roundtable.

12. Freitag L, Ollivier-Gooch C (1996) A Comparsion of Tetrahedral Mesh Im-
provement Techniques. In: Proc. 5th Intl. Meshing Roundtable.

13. Shewchuk J R (1998) Tetrahedral Mesh Generation by Delaunay Refinement.
In: Proc. 14th Annu. Sympos. Comput. Geom.

On Refinement of Constrained Delaunay Tetrahedralizations 527

Fig. 12. Engine: The sizing function is automatically derived from the input CDT.
Parameters: B = 2.0, α1 = ∞, α2 = 1/

√
2. Top left, the input CDT. Top right, a

view of the resulting mesh. Bottom, the solution of a static heat equation (solved
by pdelib [33]).

14. Shewchuk J R (1998) Tetrahedral Mesh Generation by Delaunay Refinement.
In: Proc. 14th Annu. Sympos. Comput. Geom.

15. Shewchuk J R (2000) Mesh Generation for Domains with Small Angles. In:
Proc 16th Annu. ACM Sympos. Comput. Geom.

16. Shewchuk J R (2002) Constrained Delaunay Tetrahedralizations and Provably
Good Boundary Recovery. In: Proc. 11th Intl. Meshing Roundtable.

17. Shewchuk J R (2002) What Is a Good Linear Element? Interpolation, Condi-
tioning, and Quality Measures. In: Proc. 11th Intl. Meshing Roundtable.

18. Shewchuk J R (2003) Updating and Constructing Constrained Delaunay and
Constrained Regular Triangulations by Flips. In: Proc. 19th Annu. Sympos.
Comput. Geom.

19. Shewchuk J R (2005) General-Dimensional Constrained Delaunay and Con-
strained Regular Triangulations. To appear in Discrete & Computational
Geometry.

20. Cheng S W, Dey, T K, Edelsbrunner H, Facello M A, Teng S H (1999) Sliver
Exudation. J. ACM, 47, 883–904.

528 H. Si

21. Cheng S W, Dey T K, Ramos E A, Ray T (2004) Quality Meshing for Ployhedra
with Small Angels. In: Proc. 20th Annu. ACM Sympos. Comput. Geom.

22. Cheng S W, Dey T K, Ray T (2005) Weighted Delaunay Refinement for Poly-
hedra with Small Angles. In: Proc. 14th Intl. Meshing Roundtable.

23. Edelsbrunner H, Li X Y, Miller G, Stathopoulos A, Talmor D, Teng S H,
Üngör A, Walkington N (2000) Smoothing Cleans up Slivers. In: Proc. 32th
Annu. ACM Sympos. Theory of Computing, 273–277.

24. Edelsbrunner H, Guoy D. (2002) An Experimental Study of Sliver Exudation.
Engineering with Computers, 18, 299–240.

25. Fuhrmann J, Langmach H (2001) Stability and Existence of Solutions of Time-
Implicit Finite Volume Schemes for Viscous Nonlinear Conservation Laws.
Appl. Numer. Math., 37(1-2): 201–230.

26. Du Q, Wang D. (2003) Tetrahedral Mesh Generation and Optimization Based
on Centroidal Voronoi Tessellations. Int. J. Nummer. Meth. Engng, 56, 1355–
1373.

27. Üngör A (2004) Off-centers: A New Type of Steiner Points for Computing
Size-Optimal Guaranteed-Quality Delaunay Triangulations. In: Proc. LATIN,
152–161.

28. Pav S, Walkington N (2004) A Robust 3D Delaunay Refinement Algorithm. In:
Proc. 13th Intl. Meshing Roundtable.

29. Alliez P, Cohen-Steiner D, Yvinec M, Desbrun M (2005) Variational Tetrahe-
dral Meshing. ACM Transactions on Graphics, 24(3): 617–625.

30. Oudot S, Rineau L, Yvinec M (2005) Meshing Volumes Bounded by Smooth
Surfaces. In: Proc. 14th Intl. Meshing Roundtable.

31. Si H, Gärtner K (2005) Meshing Piecewise Linear Complexes by Constrained
Delaunay Tetrahedralizations. In: Proc. 14th Intl. Meshing Roundtable.

32. TetGen, a Quality Tetrahedral Mesh Generator. http://tetgen.berlios.de.
33. pdelib, Tool Box for Solving Partial Differential Equations. http://www.wias-

berlin.de/software/pdelib
34. AcuSolve, a Finite Element Incompressible Flow Solver. http://www.acusim.

com.

