
An Automatic and General Least-Squares
Projection Procedure for Sweep Meshing

Xevi Roca and Josep Sarrate

Laboratori de Càlcul Numèric, ETSE de Camins, Canals i Ports de Barcelona,
Universitat Politècnica de Catalunya, Edifici C2, Jordi Girona 1-3, E-08034
Barcelona, Spain

Summary. In this paper we present a new node projection scheme to generate
hexahedral meshes in sweeping geometries. It is based on a least-squares approxima-
tion of an affine mapping. In the last decade several functionals have been defined
to perform this least-square approximation. However, all of them present several
shortcomings in preserving the shape of the inner part of the projected meshes, i.e.
the offset data, for simple and usual geometrical configurations. To overcome these
drawbacks we propose to minimize a more general functional that depends on two
vector parameters. Moreover, we detail a procedure that automatically selects these
parameters in such a way that offset data is maintained in the inner part of projected
meshes.

Key words: Finite element method; mesh generation; hexahedral elements;
sweep; node projection; affine mapping.

1 Introduction

Several fast and robust algorithms have been developed to generate unstruc-
tured tetrahedral meshes [1, 2]. However, fully automatic unstructured hexa-
hedral mesh generation algorithms are still not available. Therefore, special
attention has been focused on existing algorithms that decompose the entire
geometry into several simpler pieces that can be considered as union of one-
to-one extrusion volumes. Sweeping is one of the most robust and efficient
algorithms to mesh these simpler volumes with hexahedral elements. Several
algorithms have been devised to generate hexahedral meshes by projecting
the cap surfaces along the sweep path [3, 4, 5, 6]. In all of them the cru-
cial step is the placement of the inner nodes. From the computational point

xevi.roca@upc.edu jose.sarrate@upc.edu ��

��This work was partially sponsored by the Ministerio de Educación y Cien-
cia under grants DPI2004-03000 and CGL2004-06171-C03-01/CLI, and E.T.S.
d’Enginyers de Camins, Canals i Ports de Barcelona

488 X. Roca and J. Sarrate

of view, sweep methods based on a least-squares approximation of an affine
mapping are the fastest alternative to compute these projections [7]. Several
functionals have been introduced to perform the least-squares approximation,
see section 2. In spite of their computational efficiency (both in terms of CPU
time and memory), these methods present several drawbacks. For instance,
the minimization of these functionals may lead to a set of normal equations
with a singular system matrix for very usual geometrical configurations. In
addition, the obtained mesh may present several undesired features such as
flattening and skewness, see [9] for details.

In order to overcome these shortcomings, in reference [9] we introduced a
new functional that depends on two vector parameters that can be selected
by the user. However, only a feasible selection of these parameters, based on
our experience, was provided. In this paper we first prove the relationship be-
tween the optimal solution of the classical functional and the optimal solution
of the new functional proposed in [9]. In addition, we propose a definition
of a measure of the normal vector to a given loop of nodes that we denote
by pseudo-normal. Based on the previous relationship and the definition of
the pseudo-normal, we prove and detail a new algorithm that automatically
selects the functional parameters. These parameters are selected in order to
preserve the shape of the inner part of projected meshes, i.e. offset data. It is
important to point out that the geometrical cases that lead to a set of nor-
mal equations with a singular system matrix are identified from the singular
value decomposition (SVD) of the optimal solution of the classical functional.
Moreover, to increase the computational efficiency of the proposed algorithm,
the minimization of the new functional adequately reuses the optimal solution
of the classical functional. Finally, we present two simple examples that show
the robustness and the reliability of the proposed algorithm.

2 Problem Statement and Functional Definitions

Let X = {xi}i=1,...,m ⊂ Rn be a set of source points, and Y = {yi}i=1,...,m ⊂
Rn a set of target points with m ≥ n. In a sweep application {xi}i=1,...,m

are the nodes that belong to the boundary of the projected layer (where the
initial layer is the source surface mesh). Similarly, {yi}i=1,...,m are the nodes
that belong to the boundary of the target layer. Our goal is to find a mapping
φ : Rn → Rn such that

yi = φ(xi), i = 1, . . . , m. (1)

We approximate φ by an affine mapping ϕ from Rn to Rn,

ϕ(x) = A(x− cX) + cY , (2)

where

An Automatic and General Least-Squares Projection for Sweep Meshing 489

cX :=
1
m

m∑

i=1

xi and cY :=
1
m

m∑

i=1

yi

are the the geometrical centers of the sets X and Y , respectively. The affine
mapping ϕ is computed by minimizing the functional

F (A) :=
m∑

i=1

‖yi − cY −A(xi − cX)‖2 =
m∑

i=1

‖yi −Axi‖2, (3)

where x = x− cX and y = y − cY , see details in [5, 9]. The minimization of
functional F is equivalent to imposing the following m constraints

A(xi − cX) = yi − cY , i = 1, · · · ,m, (4)

being the unknowns the coefficients of the n× n matrix

A =






a1,1 . . . a1,n

...
...

an,1 . . . an,n




 .

These constraints can be expressed in matrix form as

AX = Y, (5)

where

X :=






x1
1 − cX

1 . . . xm
1 − cX

1
...

...
x1

n − cX
n . . . xm

n − cX
n




 and Y :=






y1
1 − cY

1 . . . ym
1 − cY

1
...

...
y1

n − cY
n . . . ym

n − cY
n




 ,

However, minimization of functional (3) generates flattened layers under the
following two conditions:

• If the set of source points, X, determines a plane in 3D geometries (for
instance a source surface mesh with planar boundary), then the minimiza-
tion of functional (3) leads to a set of normal equations with singular
system matrix, see [9]. In practice, singular value decomposition is used
to solve the set of normal equations. In this case the inner part of the
projected mesh will be planar. Hence, the offset data of the source surface
mesh will be lost.

• If a given mesh is projected to an inner layer with a planar boundary by
minimizing (3), then the projected mesh will always be planar, see [9].

It is important to point out that these geometrical configurations are ex-
tremely usual in CAD models. We will use the term hyperplanar to denote
a linear variety of dimension n − 1 (a plane for n = 3 and a straight line
for n = 2). In particular, given a hyperplanar set of points, X, we define the
homogeneous hyperplane of X as the subspace of vectors

490 X. Roca and J. Sarrate

H = {v ∈ Rn| < nX ,v >= 0}, (6)

where nX ∈ Rn is a unitary normal vector to X.
To solve the previous drawbacks, Knupp introduced another change of co-

ordinates: x = x−cX+cY −cX and y = y−cX , see [5, 9] for details. Moreover,
using these new coordinates the following functional was also defined in [5]

G(A) :=
m∑

i=1

‖yi − cX −A(xi − cX + cY − cX)‖2 =
m∑

i=1

‖y i −Ax i‖2. (7)

Therefore, we are looking for a linear mapping A such that it approximately
transforms, in the least-squares sense, X = {x i}i=1,...,m to Y = {y i}i=1,...,m.

However, functional (7) also presents two important shortcomings:

• If the set of source points, X, is hyperplanar and cY − cX ∈ H, then
the minimization of functional G leads to a set of normal equations with
singular system matrix, see [9].

• If a non-planar surface mesh with planar boundary is projected to an inner
layer which is non-parallel to the boundary of the source surface, then the
projected nodes do not preserve the shape of the original surface mesh and
a skewness effect is introduced, see [9].

In order to overcome the drawbacks arising from the minimization of func-
tionals F and G, we introduced the following functional, see [9]

H(A;uX ,uY) :=
m∑

i=1

‖yi − cY −A(xi − cX)‖2 + ‖uY −AuX‖2, (8)

where uX and uY belong to Rn. It is important to point out that vectors
uX and uY in (8) can be properly selected in order to obtain several desired
properties of functional H.

It has been proved that if the set of source points is hyperplanar it is
always possible to select a vector uX such that the minimization of H leads
to a set of normal equations with a full rank matrix, see [9]. However, given
any arbitrary geometry no algorithm was proposed to properly define vectors
uX and uY . The main goal of the present paper is to explicitly state how to
select vectors uX and uY in order to define an automatic and robust algorithm
to sweep meshes in a one-to-one volume.

3 Analysis of Functional H

In this section we present new properties of functional H that are of major
importance to deduce the general node projection algorithm. First, we prove
four lemmas that will allow us to relate the solutions of the minimization of
functionals F and H.

An Automatic and General Least-Squares Projection for Sweep Meshing 491

Lemma 1. If X is a hyperplanar set of points and uX /∈ H, then Rn =
span(uX)⊕ H.

Proof. In this case, the homogeneous hyperplane defined by X is a subspace of
Rn with dimension equal to n−1. Since uX /∈ H we have that span(uX)∩ H =
{0}. Thus, Rn = span(uX)⊕ H. ��

Lemma 2. Let X be a hyperplanar set of points. Assume that uX /∈ H, uY ∈
Rn, and A ∈ L(Rn) are given. Then, there exists a mapping Θ[A,uX ,uY] :
Rn → Rn such that:

(i) Θ[A,uX ,uY] ∈ L(Rn)
(ii) Θ[A,uX ,uY](uX) = uY

(iii) Θ[A,uX ,uY](vH) = AvH, ∀vH ∈ H.

Proof. Given v ∈ Rn, Lemma 1 states that Rn can be represented as the
direct sum of the subspaces span(uX) and H. Therefore, for every v ∈ Rn

there exist vH ∈ H and λ ∈ R such that

v = vH + λuX . (9)

Hence, we define the image of v ∈ Rn by Θ[A,uX ,uY] as

Θ[A,uX ,uY](v) := AvH + λuY . (10)

It is straightforward to prove that Θ[A,uX ,uY] defined in such a way is
linear, and that it verifies properties (ii) and (iii). ��

To illustrate a practical application of Lemma 2 in a three-dimensional
problem, we consider a set of points X located on a plane H, see figure 1. Under
these conditions, the numerical solution obtained by minimizing functional F
maps all vectors that do not belong to the plane H to the image of this plane
by A, i.e. the flattening effect. In this case, Lemma 2 ensures that by using the
linear mapping Θ we will be able take into account the offset data by mapping
parallel vectors to uX (since vector uX /∈ H) to the desired direction, provided
by vector uY . In addition, we will preserve the behavior of the linear mapping
A over H. Specifically, any vector that belongs to the plane H will be mapped
according to the linear mapping A. In practice, we will determine this matrix
A by minimizing functional F , as we will see in Proposition 1.

Lemma 3. Let X be a hyperplanar set of points, and assume that uX /∈ H

and uY ∈ Rn. Then,
F (Θ[A,uX ,uY]) = F (A).

492 X. Roca and J. Sarrate

v = vH + λuX

H

vH

λuX

uX

cX

cY AvH

uY

λuY

Θ[A,uX ,uY]

Θ[A,uX ,uY](v) = AvH + λuY

AH

X

XA

Fig. 1. Transformation of a given vector v by mapping Θ when X is a planar set.

Proof. Since X is hyperplanar, xi − cX ∈ H, for i = 1, . . . , m. Therefore, by
the third property of Lemma 2, Θ[A,uX ,uY](xi − cX) = A(xi − cX), for
i = 1, . . . , m. Finally, according to the definition of the functional F

F (Θ[A,uX ,uY]) =
m∑

i=1

‖yi − cY −Θ[A,uX ,uY](xi − cX)‖2

=
m∑

i=1

‖yi − cY −A(xi − cX)‖2 = F (A).

��

Lemma 4. Let X be a hyperplanar set of points, and assume that uX /∈ H

and uY ∈ Rn. Then,

H(Θ[A,uX ,uY];uX ,uY) = F (Θ[A,uX ,uY])

Proof. This result follows from the definitions of functionals F and H, and
Lemma 2. ��

Proposition 1. Let X be a hyperplanar set of points, and assume that uX /∈
H and uY ∈ Rn. If AF ∈ L(Rn) and AH ∈ L(Rn) are such that

F (AF) = min
A∈L(Rn)

F (A),

H(AH ;uX ,uY) = min
A∈L(Rn)

H(A;uX ,uY),

then: Θ[AF ,uX ,uY] = AH .

An Automatic and General Least-Squares Projection for Sweep Meshing 493

Proof. We have already proved, see details in [9], that the minimization of
functional H is equivalent to solving n uncoupled overdetermined linear sys-
tems. Thus, the minimization of functional H has one and only one solution.
In addition, we define R(A;uX ,uY) := ‖uY −AuX‖2. Hence,

H(A;uX ,uY) = F (A) + R(A;uX ,uY).

We consider the following sequence of equalities and inequalities:

F (AF) ≤ F (AH) since AF minimizes F

≤ F (AH) + R(AH ;uX ,uY) since R(A;uX ,uY) ≥ 0 for every A

= H(AH ;uX ,uY) by definition of R(A;uX ,uY) and H

≤ H(Θ[AF ,uX ,uY];uX ,uY) since AH minimizes H

= F (Θ[AF ,uX ,uY]) by Lemma 4

= F (AF). by Lemma 3.

Note that the first and the last terms are the same. Thus, all the inequalities
are in fact equalities. From the previous sequence of equalities we prove that
Θ[AF ,uX ,uY] and AH minimize the functional H. Since the minimization
of H has a unique solution we have that Θ[AF ,uX ,uY] = AH , and the
proposition holds. ��

To summarize, based on the four previous lemmas, Proposition 1 states
a strong relationship between the optimal solutions of functional F and H,
namely AF and AH . This relationship is the keystone for the general algo-
rithm to minimize functional H. It states that when X is a hyperplanar set of
points we can obtain the unique solution of the minimization of H by means
of one of the optimal solutions of the minimization of F . Specifically, AH can
be obtained as the linear transformation that maps uX to uY , and any vector
vH ∈ H to AvH, see figure 1 for a 3D interpretation. Hence, the two remaining
tasks are: 1. to automatically select the two vector parameters uX and uY

according to the given geometry; and 2. to determine how to compute the
linear transformation Θ, see section 5.

4 Preserving Offset Data

In this section we introduce several definitions and results in order to formalize
some desirable properties of node projection algorithms. The key issue is the
definition of a measure of the normal vector to a given loop of nodes. Recall
that in projection algorithms the inner layers are described by a loop of nodes.
That is, there is not an underlying surface carrying any additional information.
Moreover, in a wide range of applications the loops of nodes are not planar.
Therefore the normal vector to this kind of loops is not defined. However,

494 X. Roca and J. Sarrate

given a loop of nodes we will define a pseudo-normal vector and we will relate
it to the preservation of the shape of the inner part of the projected mesh,
the offset data.

Definition 1 (Loop). Given a set of points X = {xi}i=1,...,m ⊂ R3, a loop
is the closed poly-line constructed by joining xi with xi+1 for i = 1, . . . , m.
We consider that xm+1 ≡ x1.

In several applications it is necessary to sweep a non-simple connected
surface along the extrusion path. These surfaces are defined by one outer
boundary and as many inner boundaries as holes they have. Therefore, we
need to consider sets of points composed by several loops. Specifically, one
counter-clockwise oriented loop corresponding to the outer boundary, and
several clockwise oriented loops corresponding to the inner holes.

Definition 2 (Multi-loop). A set of points X = {xi}i=1,...,m ⊂ R3 is a
multi-loop if it is organized in p loops X1, . . . , Xp.

Definition 3 (Pseudo-area). Given a vector c ∈ R3, the pseudo-area of a
loop X = {xi}i=1,...,m ⊂ R3 is

a :=
m∑

i=1

(xi − c)× (xi+1 − c).

The pseudo-area of a multi-loop X = X1 ∪ · · · ∪Xp organized in p loops is

a := a1 + · · ·+ ap,

where a1, . . . ,ap are the pseudo-areas of loops X1, . . . Xp, respectively.

Note that ‖(xi − c)× (xi+1 − c)‖ is the double of the area of the triangle
xixi+1c, see figure 2. Moreover, if X is a planar multi-loop, then the pseudo-
area a is equal to the area enclosed by X.

In order to prove that pseudo-area is well defined, the next proposition
proves that the pseudo-area vector does not depend on the selected c ∈ R3.
Moreover, it is invariant under translations, and its norm is also invariant
under orthogonal transformations.

Proposition 2 (Invariance of pseudo-area). Let X = {xi}i=1,...,m ⊂ R3

be a set of points. The pseudo-area vector verifies:

(i) Given c ∈ R3 then

a =
m∑

i=1

(xi − c)× (xi+1 − c) =
m∑

i=1

xi × xi+1.

(ii) Given t ∈ R3 the pseudo-area of X is equal to the pseudo-area of X +t =
{xi + t}i=1,...,m.

An Automatic and General Least-Squares Projection for Sweep Meshing 495

c

x1

x2

x4

x5
x6

x3

a = 6
i=1(x

i − c)× (xi+1 − c)

Fig. 2. Geometrical interpretation of the pseudo-area vector.

(iii) Given an orthogonal transformation N, then the pseudo-area of NX =
{Nxi}i=1,...,m is Na, where a is the pseudo-area of X.

Proof. Given c ∈ R3, and taking into account that X is a loop, then

a =
m∑

i=1

(xi − c)× (xi+1 − c)

=
m∑

i=1

xi × xi+1 +
m∑

i=1

c× (xi − xi+1) +
m∑

i=1

c× c

=
m∑

i=1

xi × xi+1 +
m∑

i=1

c× (xi − xi+1) =
m∑

i=1

xi × xi+1.

Given t ∈ R3, the second property is a direct consequence of property (i)
applied to c = −t.

By property (i) and taking into account that N is orthogonal we have that

aNX =
m∑

i=1

Nxi ×Nxi+1 =
m∑

i=1

N(xi × xi+1) = Na.

��

At this point, given a loop X, we have proved that the norm of the pseudo-
area vector is a geometrical invariant associated to the loop. Furthermore, it
only depends on the ordering and the relative geometrical location of the
points.

Proposition 3 (Projected area). If a multi-loop X is projected on an or-
thogonal plane to its pseudo-area vector a, then the obtained polygon has area
equal to ||a||.

496 X. Roca and J. Sarrate

Proof. By definition of pseudo-area of a multi-loop, it suffices to prove the re-
sult for a single loop. Given a loop X, the projection of the points {xi}i=1,...,m

on the orthogonal plane to a are the points xi
a⊥ := xi − xi

a, where

xi
a :=

< xi,a >

< a,a >
a.

Hence, we have that xi = xi
a + xi

a⊥ for i = 1, . . . , m. The pseudo-area of X is

a =
m∑

i=1

xi × xi+1 =
m∑

i=1

(xi
a + xi

a⊥)× (xi+1
a + xi+1

a⊥)

=
m∑

i=1

xi
a × xi+1

a⊥ + xi
a⊥ × xi+1

a + xi
a⊥ × xi+1

a⊥

Note that xi
a×xi+1

a⊥ and xi
a⊥ ×xi+1

a are orthogonal to a. Thus, its sum is also
orthogonal. Furthermore, xi

a⊥ × xi+1
a⊥ is parallel to a. Therefore xi

a × xi+1
a⊥ +

xi
a⊥ ×xi+1

a cannot contribute to the parallel component to a and it has to be
0. Hence, we have that

a =
m∑

i=1

xi
a⊥ × xi+1

a⊥ ,

which is the area of the polygon obtained from the projection of the loop X
on the orthogonal plane to a. ��

Hence, the view of the loop from the direction of the pseudo-area has an
area equal to the norm of the pseudo-area of X. Therefore, we can interpret
the direction of the pseudo-area as a normal vector to the loop.

Definition 4 (Pseudo-normal). The pseudo-normal of a multi-loop X is
the unitary vector

nX
pseudo := a/||a||,

where a is the pseudo-area of X.

Note that if X is a planar loop, the pseudo-normal nX
pseudo is equal to the

unitary normal nX to X.
The pseudo-normal provides a kind of normal when there is no underlying

surface, only the loop of points. All the information along the direction of the
pseudo-normal is understood as offset data. We claim that a good node pro-
jection procedure has to preserve data along the pseudo-normal. In particular,
the flattening and skewness effects previously explained are due to a deficient
preservation of offset data. In addition, we describe two new undesired effects
related to unsatisfactory preservation of offset data:

• Offset scaling. Offset data of projected meshes is scaled along the sweep
direction. This effect appears when we project from a non-planar loop to

An Automatic and General Least-Squares Projection for Sweep Meshing 497

another non-planar loop of different thickness. It is related to the mini-
mization of functional F , and to an incorrect election of uX and uY when
minimizing functional H, see first example in section 6.

• Flipping. Offset data is projected inversely to the expected orientation.
It appears when a loop is curved towards one direction and it is projected
to another loop that is curved on the opposite direction. It is related to
the minimization of functional F , and can also appear due to incorrect
elections of uX and uY when minimizing functional H, see second example
in section 6.

Summarizing, in order to avoid flattening, skewness, offset scaling, and
flipping effects we have to obtain affine mappings that preserve the length,
direction and orientation of offset data.

5 Algorithm Implementation

In this section we detail the algorithm that we have developed in order to
properly select the parameters uX and uY and obtain the affine projection.
The basic idea is that we can efficiently use the minimization of functional
F to minimize H. The key issue is to realize that AH = Θ[AF ,uX ,uY]
when X is hyperplanar, see Proposition 1. Therefore, the optimal solution of
functional H can be computed from the optimal solution of functional F if a
proper criterion to select the vectors uX and uY is defined.

The general algorithm, for hyperplanar and non-hyperplanar set of points
X, is decomposed in two steps. First, the optimal solution AF and its singular
value decomposition are computed. Second, a criterion to select the vectors uX

and uY is defined. In addition, if the set of points X and/or Y are hyperplanar
(a planar source and/or target surfaces in 3D applications) a geometrical
interpretation of the chosen vectors uX and uY is also presented.

5.1 The Optimal Solution of Functional F and its Singular Value
Decomposition

In order to minimize functional F we compute the minimum norm solution
of Equation (5). To this end, we use the singular value decomposition of the
system matrix

X
T

= UWV
T
, (11)

where U is an m× n matrix with orthogonal columns, W is a n×n diagonal
matrix with positive or zero elements (the singular values)

W :=






w1

. . .
wn




 ,

498 X. Roca and J. Sarrate

such that w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn, and V is an n×n orthogonal matrix.
We denote by vi ∈ Rn, for i = 1, . . . , n, the columns of matrix V.

Taking into account this decomposition, we compute the minimum norm
solution, AF , as

AF = Y UW
+

V
T
, (12)

where

W
+

:=






w +
1

. . .
w +

n




 and w +

i =

{
0 if wi = 0
1
wi

if wi
= 0
for i = 1, . . . , n.

Once we have computed the optimal solution AF according to (12), we com-
pute its singular value decomposition

AF = UWVT , (13)

where U and V are two n×n orthogonal matrices, and W is a n×n diagonal
matrix with positive or zero elements (the singular values)

W :=






w1

. . .
wn




 ,

such that w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn. We denote by ui ∈ Rn and vi ∈ Rn,
for i = 1, . . . , n, the columns of matrices U and V respectively.

Remark 1. Let M be an m × n matrix, and M = UMWMVT
M its singular

value decomposition. On one hand, the columns of the orthogonal matrix VM

with an associated singular value equal to zero span KerM. On the other
hand, the columns of the orthogonal matrix UM with an associated positive
singular value span RangeM, see references [10, 11].

5.2 Selection of Vectors uX and uY

From Equation (11) we realize that when the set of points X is hyperplanar
the diagonal matrix W has a null singular value: wn = 0. In this case, the
singular value decomposition of the optimal solution AF will also have a null
singular value: wn = 0. Therefore, to properly choose uX and uY we have to
analyze the KerAF and the RangeAF .

Lemma 5. If dim KerAF = 1, then KerAF = span(vn).

Proof. Since dimKerAF = 1 and w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0 we have
that wi > 0 for i = 1, . . . , n − 1 and wn = 0. To finalize, by Remark 1 we
know that KerAF = span(vn). ��

An Automatic and General Least-Squares Projection for Sweep Meshing 499

Table 1. Algorithm to obtain the affine projection.

STEP 1. Compute the optimal solution AF according to Equation (12).
STEP 2. Compute the SVD of AF according to Equation (13).
STEP 3. Set the values of uX and uY :

3.a If wi > 0, for i = 1, . . . , n.
Set uX = nX

pseudo and uY = nY
pseudo.

3.b If wi > 0, for i = 1, . . . , n − 1, and wn = 0.
Set uX = vn and uY = un.

3.c If wi ≥ 0, for i = 1, . . . , n − 2 and wn−1 = wn = 0.
Degenerated case not applicable to real situations. Stop the algorithm.

STEP 4. For any x ∈ R
n compute the linear part of the affine projection as

A(x) = AF (x− < x,uX > uX)+ < x,uX > uY .

STEP 5. Compute the desired affine mapping according to Equation (2)

ϕ(x) := A(x − cX) + cY .

Lemma 6. If dim KerAF = 1, then (RangeAF)⊥ = span(un), where ⊥ de-
notes orthogonality.

Proof. Since dim KerAF = 1 and w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0 we
have that wi > 0 for i = 1, . . . , n − 1, and wn = 0. Taking into account
Remark 1, we know that RangeAF = span(u1, . . . ,un−1). To finalize, since
U is orthogonal we have that < un,ui >= 0, for i = 1, ..., n − 1. Therefore
(RangeAF)⊥ = span(un). ��

Lemmas 5 and 6 define the desired criterion to select vectors uX and uY .
That is, to obtain the optimal solution AH , we first find the optimal solution
AF , and based on its singular value decomposition we select the vectors uX

and uY . Our proposed algorithm is composed of five steps and it is summarized

In the fourth step we obtain the linear part of the affine mapping as

AF (x− < x,uX > uX)+ < x,uX > uY .

In the case that X is a hyperplanar set we can decompose, by Lemma 2, x as
xH + λuX. Therefore, the obtained linear transformation maps xH to AF xH

and λuX to λuY. Hence, by Proposition 1 we know that this linear mapping is
the optimal solution of the minimization of functional H, obtained by means
of minimizing F .

5.3 Geometrical Interpretation

Finally, we will prove two additional results that provide a geometrical inter-
pretation to the obtained selection of vectors uX and uY in our algorithm.

in Table 1.

500 X. Roca and J. Sarrate

Table 2. Selection of vectors uX and uY according to the sets X and Y .

Y hyperplanar Y non-hyperplanar

X hyperplanar
dimKerAF = 1

uX = nX = nX
pseudo

uY = nY = nY
pseudo

dimKerAF = 1
uX = nX = nX

pseudo

uY = un

X non-hyperplanar
dimKerAF = 1

uX = vn

uY = nY = nY
pseudo

dimKerAF = 0
uX = nX

pseudo

uY = nY
pseudo

Specifically, Lemma 8 states that if X is a hyperplanar set of points, then
our algorithm selects uX as the unitary normal vector to X: uX = vn = nX ,
which is in fact the natural choice. Moreover, Lemma 9 states that if Y is a
hyperplanar set of points, then our algorithm selects uY as the unitary nor-
mal vector to Y : uY = un = nY , which is also the obvious choice. Table 2
presents the geometrical interpretation of the proposed selection of vectors
uX and uY .

Lemma 7. If X is a hyperplanar set of points and nX is an unitary normal
vector to X, then KerX = span(vn) = span(nX).

Proof. Since X is hyperplanar then RankX = n − 1, see [9]. That is,
dim KerX = 1. Therefore, KerX = span(vn), see Remark 1. Since nX is
an unitary normal vector we have that XnX = 0, see equation (6). Hence,
nX ∈ KerX. Thus, span (nX) = KerX = span(vn). ��

Lemma 8. Let X be a hyperplanar set of points and AF the optimal solution
of functional F computed according to Equation (12). If nX is an unitary
normal vector to X and dim KerAF = 1, then

KerAF = KerX = span(vn) = span(vn) = span(nX).

Proof. Since V is an orthogonal matrix we have that V
T
vn = (0 · · · 0 1)T .

Moreover, since X is hyperplanar and w1 ≥ w2 ≥ · · · ≥ wn−1 ≥ wn ≥ 0, we
have that wn = 0. Therefore, W

+
V

T
vn = W

+
(0 · · · 0 1)T = 0. Hence

AF vn = Y UW
+

V
T
vn = 0.

That is, vn ∈ KerAF . Since dim KerAF = 1 we have that KerAF =
span(vn). To finalize, we only have to apply Lemmas 5 and 8. ��

Lemma 9. If Y is a hyperplanar set of points, dim KerAF = 1, and nY is
an unitary normal vector to Y , then (RankAF)⊥ = span(un) = span(nY).

An Automatic and General Least-Squares Projection for Sweep Meshing 501

Proof. First, since Y is hyperplanar then Y
T
nY = 0, or equivalently

(nY)T Y = 0T . (14)

Next, we will prove that (nY)T UWVT = 0T

(nY)T AF = (nY)T UWVT by Equation 13

= (nY)T Y UW
+
V

T
by Equation 12

= 0T by Equation 14 .

Since V is orthogonal it is invertible. Thus

(nY)T UW = 0T ,

which is equivalent to the following set of conditions

(nY)T u1w1 = 0
...

(nY)T un−1wn−1 = 0
(nY)T unwn = 0.

Since dimKerAF = 1, then wi > 0, for i = 1, . . . , n−1, and wn=0. Therefore,
nY is orthogonal to u1, . . . ,un−1 (the first n − 1 columns of matrix U). To
finalize, using Lemma 6, we have that span(un) = (RangeAF)⊥ = span(nY).

��

6 Numerical Examples

Two examples are presented to assess several aspects and advantages of the
proposed algorithm. To highlight the analyzed capabilities in both cases we
have selected two extremely simple geometries and we have discretized them
with a coarse mesh, as it is suggested in [14]. In both examples we first project
the source surface onto the target surface [12]. Second, we obtain a structured
mesh on the linking sides using a transfinite interpolation algorithm (TFI)
[1]. Third, we compute an initial inner node position using a weighted pro-
jection from the cap surfaces [3, 5, 9]. Finally, a boundary error correction
is added to compute the final location [7, 8]. In addition, both examples are
computed using two strategies: 1. projecting only from the cap surfaces, and
2. starting from the cap surfaces, compute the position of the new layer from
the previous one in an advancing front manner. Note that in these exam-
ples we analyze the capability of the projection algorithm to reproduce the

502 X. Roca and J. Sarrate

Fig. 3. Geometry of the first example: (a) top view; (b) bottom view

shape of the inner part of the projected mesh. That is, the flattening and the
flipping effects. Other issues such as the application to skewed and twisted
sweep paths, layers defined by non-affine or non-convex boundaries, or the
skewness effect introduced by functional G have been already addressed, see
[9, 12] for details. In order to measure the quality of the hexahedral mesh we
use the hexahedron shape metric, fshape, defined in [13]. Note that fshape is
a normalized measure. Therefore, it always lies in the range [0, 1].

The goal of the first example is to illustrate that, using the developed algo-
rithm, the offset scaling and flattening effects introduced by the minimization
of functional F can be avoided. That is, we will show that the obtained affine
mapping preserves the shape of the source mesh. Hence, it generates a hexahe-
dral mesh with less low-quality elements than the minimization of functional
F . The one-to-one volume is defined by two non-planar surfaces, see figure 3.
The boundary loops of both surfaces are symmetric, being the boundary loop
of the middle inner layer on the symmetry plane, see figure 4(a). However,
the surfaces are not symmetric. Note that they have a non-planar inner part
curved in the same orientation.

Figures 4(b) and 4(c) show the central cross-section of the obtained meshes
minimizing functionals F and using the proposed algorithm, respectively. For
this geometry, as the sweeping process advances from one layer to the next
one, the boundary loops become flatter and flatter until a planar boundary
loop is reached in the middle of the sweep path. Therefore, the flattening and
offset scaling effects produced by the minimization of functional F appear.
That is, in each projection the inner shape of the projected mesh becomes
more planar. When the planar loop in the middle of the geometry is reached,
see figure 4(a), a planar projected mesh is obtained and the offset data of
the cap surfaces is completely lost. Nevertheless, the proposed algorithm also
imposes that the optimal solution has to map uX to uY. According to our
selection of these vectors, we take into account the offset information of the

An Automatic and General Least-Squares Projection for Sweep Meshing 503

Fig. 4. (a) Surface mesh; (b) central cross-section of the obtained mesh minimizing
F ; (c) central cross-section of the obtained using the proposed algorithm.

boundary loops, and in each projection, the location of the inner nodes of the
new layer resemble the shape of the cap meshes.

It is important to point out that in this particular case, all the boundary
loops are affine. That is, given two boundary loops an affine mapping exists
than exactly maps one onto the other. Therefore, functional F becomes null in
each projection and the boundary error correction will not improve the initial
mesh since it will not be triggered. In other words, the boundary correction will
not contribute since there is not error in the projection of the boundaries. On
the contrary, the developed algorithm also imposes that the computed affine
mapping has to map uX to uY. Therefore, in this example it does not exactly
map the boundary loops in the pseudo-normal direction, and the boundary
error correction will be triggered. Hence, we capture the shape of the source
surface and we obtain curved inner layers of elements, see figure 4(c), while
the minimization of functional F delivers more planar layers, see figure 4(b).
The meshes presented in figures 4(b) and 4(c) are obtained using a layer-by-
layer projection procedure. No significant differences have been observed if
the projection is computed only from the source and the target surfaces.

Figure 5 shows an histogram of the element quality. Note that using
the proposed algorithm we are able to increase the minimum quality value,
min(fshape). However, the minimization of F generates elements with a higher
value of max(fshape). The general behavior, which we have also observed in
other examples, is that the proposed algorithm tends to increase the minimum
quality value and to concentrate the quality of the elements around the mean
value.

The goal of the second example is to illustrate that the flipping effect
introduced by the minimization of functional F can be avoided using the pro-
posed algorithm. In this example we discretize an extrusion volume defined by
two surfaces with a rectangular boundary and with non-planar inner part, see

504 X. Roca and J. Sarrate

0

200

400

600

800

1000

1200

1400

1600

0.
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0

Shape quality

N
u

m
b

er
 o

f
el

em
en

ts

Functional H

Functional F

F H

min(fshape) 0.38 0.47
max(fshape) 0.89 0.77

fshape 0.69 0.68
σ(fshape) 0.08 0.06

Fig. 5. Mesh quality analysis for the first example. Distribution of the elements
according to its quality and statistical values of the quality of the elements.

Fig. 6. Geometry of the second example: (a) top view; (b) bottom view

figure 6. These cap surfaces are parallel, and their boundaries are orthogonal
to the sweep direction. We start the sweep process by meshing the linking
sides. However, due to a bad parameterization of one linking side, the loops
of nodes that define the inner layers are not completely planar. Moreover,
the loops of nodes are alternatively curved towards and opposed to the sweep
direction.

Under these conditions the minimization of functional F introduces the
flipping effect and unacceptable flat hexahedral elements with zero volume
are obtained, see figure 7(a). Note that since the loops of nodes are affine,
the boundary error cannot correct this drawback. However, according to the
proposed algorithm we are able to detect the proper direction of vectors uX

and uY . Hence, the flipping effect due to the minimization of functional F
is avoided and a high quality mesh is generated, see figure 7(b). Similarly to
the previous example, figures 7(a) and 7(b) are obtained projecting from one
layer to the next one in an advancing front manner. No significant differences

An Automatic and General Least-Squares Projection for Sweep Meshing 505

Fig. 7. Central cross-section of the obtained mesh: (a) minimizing F ; (b) using the
proposed algorithm.

0

500

1000

1500

2000

2500

0.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

0

Shape quality

N
u

m
b

er
 o

f
el

em
en

ts

Functional H

Functional F

F H

min(fshape) 0.00 0.99
max(fshape) 1.00 1.00

fshape 0.82 0.99
σ(fshape) 0.27 0.002

Fig. 8. Mesh quality analysis for the second example. Distribution of the elements
according to its quality and statistical values of the quality of the elements.

have been observed if the projections are computed only from the source and
the target surfaces.

Figure 8 presents the distribution of the elements according their quality.
Note that the presented algorithm generates a mesh such that the quality of
the elements verifies fshape ∈ [0.95, 1.0].

7 Conclusions

In this paper we have proposed and detailed a node projection algorithm
to obtain hexahedral meshes in one-to-one sweep geometries. We show that
this algorithm, in conjunction with the boundary error procedure, is of major

506 X. Roca and J. Sarrate

importance to preserve non-planar shape of the cap surfaces in the inner layers
of the hexahedral mesh. Moreover, we claim that the presented algorithm has
two additional advantages. First, it provides better node location than the
minimization of functionals F and G. Second, since it takes into account the
offset data of the cap surfaces (via the vectors uX and uY), it triggers the
boundary correction procedure when the boundary loops of the layers are
affine. To summarize, using this algorithm we are able to overcome flattening,
skewness, offset scaling, and flipping effects introduced by the minimization
of functional F .

References

1. Thompson JF, Soni B, Weatherill N Handbook of Grid Generation. CRC Press,
1999.

2. Owen SJ (1998) A survey of unstructured mesh generation technology. In: 7th
Int Meshing Roundtable 239–267.

3. Blacker T (1996) The Cooper Tool. In: 5th Int Meshing Roundtable 13–30.
4. Mingwu L, Benzley SE (1996) A multiple source and target sweeping method

for generating all-hexahedral finite element meshes. In: 5th Int Meshing Round-
table 217–225.

5. Knupp PM (1998) Next-generation sweep tool: a method for generating all-
hex meshes on two-and-one-half dimensional geometries. In: 7th Int Meshing
Roundtable 505–513.

6. Staten ML, Canann SA, Owen SJ (1999) BMSweep: Locating interior nodes
during sweeping. Eng Comput 15:212–218.

7. Scott MA, Earp MA, Benzley SE, Stephenson MB (2004) Adaptive Sweeping
Techniques. In: 14th Int Meshing Roundtable 417–432.

8. White DR, Saigal S, Owen SJ (2004) CCSweep: automatic decomposition of
multi-sweep volumes. Eng Comput 20:222-236.

9. Roca X., Sarrate J. Huerta A (2005) A new least-squares approximation of
affine mappings for sweep algorithms. In: 14th Int Meshing Roundtable 433–
448.

10. Gill PE, Murray W, Wright MH (1991) Numerical Linear Algebra and Opti-
mization. Addison-Wesley, Edwood City.

11. Lawson C, Hanson R (1974) Solving Least Squares Problems. Prentice-Hall,
Englewood Cliffs.

12. Roca X, Sarrate J, Huerta A (2004) Surface mesh projection for hexahedral
mesh generation by sweeping. In: 13th Int Meshing Roundtable 169–179.

13. Knupp PM (2004) Algebraic mesh quality metrics for unstructured initial
meshes. Finite Elem Anal Des 39:217241.

14. Tautges TJ, White DR and Leland RW (2004) Twelve ways to fool the masses
when describing mesh generation performance. In: 13th Int Meshing Round-
table 181–190.

