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Summary. Mesh optimization is critical in numerical simulations involving com-
plex or evolving geometry. Because of the geometric constraints, such as preservation
of sharp features and conservation of volume, optimizing a surface mesh poses sig-
nificant challenges, especially when a CAD model is unavailable. In this paper, we
introduce a formulation of volume conservation in a local sense for surface meshes
under smoothing or other types of mesh motion, and propose a simple and effi-
cient technique to solve it. We also present a simple and robust feature detection
technique to enhance the effectiveness of local volume conservation and mesh opti-
mization. We present the theoretical foundation of our techniques and experimental
study to demonstrate their effectiveness.
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1 Introduction

Mesh optimization is important in mesh generation for numerical simulations
[8] and in many simulations with moving boundaries [3]. For its potential
high efficiency and simplicity, a commonly used optimization strategy is mesh
smoothing, which redistributes the vertices without changing the connectivity
of a mesh. Although it has been widely used in optimizing 2-D and 3-D meshes
[2, 4, 5, 12, 17], smoothing a surface mesh has some significant challenges due
to additional geometric constraints. Two critical and nontrivial constraints are
the preservation of sharp features and conservation of volume. Although some
sophisticated techniques were developed and used in stand-alone meshing and
remeshing tools, they are hard to implement and ill-suited for numerical simu-
lation codes, especially on parallel computers. The lack of simple and effective
surface mesh smoothing techniques significantly limits the capabilities or effi-
ciencies of numerical simulations involving complex geometry under significant
motion, such as in multiphase flows [25].
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Conservation of volume (or mass) is a fundamental issue for accurate and
stable numerical simulations, especially the simulations of dynamic systems
over a long period of time [19]. It is well-known that a naive procedure, such
as Laplacian smoothing, may shrink the volume of a domain substantially
[24]. Volume conservation has attracted significant attention in recent years
in mesh optimization and surface fairing [9, 19, 23, 27]. In the context of mesh
optimization, most methods primarily focus on limiting volume errors during
mesh generation or remeshing by projecting the vertices onto a continuous
or discrete surface [6, 7, 9, 18]. These methods involve point location proce-
dures, which are potentially expensive and difficult to implement especially
on a parallel computer. In addition, if the mesh-optimization procedure must
be called repeatedly as required in many numerical simulations, severe vol-
ume errors may still occur due to accumulation of errors. The method in [19]
enforces volume conservation up to machine precision, but it may incur large
local errors near singularities or sharp features.

Another issue intimately related to volume conservation is feature de-
tection and preservation. Feature detection is a critical issue also in its
own right in mesh generation, mesh optimization, and numerical simulations
[1, 11, 16, 20, 26]. Without proper treatment of features or singularities, large
errors may occur during a meshing or remeshing process, and significant un-
dershoots or overshoots may occur near singularities in high-order approxi-
mations to a surface. Within numerical simulations, improper treatment of
features may undermine the accuracy or stability. Although a number of fea-
ture detection techniques have been proposed in the literature, the most ro-
bust techniques are also difficult to implement and typically lack a consistent
theoretical foundation. Although they may be sufficient for stand-alone mesh-
ing tools and interactive environments, simple and robust feature detection
techniques are still needed for many other computational applications.

This paper aims at developing simple and efficient techniques for surface
mesh optimization that can be easily integrated into numerical simulations
based on sound mathematical foundations. The main contributions of the
paper are twofold. First, we formulate volume conservation in a local sense for
meshes under smoothing or other types of mesh motion, and propose a simple
and efficient technique to achieve volume conservation. Second, we propose a
robust feature detection technique that is relatively easy to implement and
to integrate into meshing processes or numerical simulations. Both of these
techniques are based on an eigenvalue analysis of a metric tensor at each vertex
of the mesh, which combines the asymptotic analysis for fine discretizations
of smooth surfaces and the singularity analysis for coarse meshes or sharp
features in a fine mesh. This analysis establishes a new theoretical foundation
for feature detection and volume conservation in mesh optimization and leads
to simple and robust algorithms for them.

The remainder of the paper is organized as follows. Section 2 presents
the basic framework for our surface mesh smoothing, referred to as null-space
smoothing. Section 3 presents a formulation and numerical solution to enforce
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volume conservation in a local sense. Section 4 describes a simple and ro-
bust feature detection technique that reuses the computational tools present
in earlier sections and improves the effectiveness of mesh smoothing and lo-
cal volume conservation. Section 5 demonstrates the effectiveness of our new
technique in surface mesh smoothing. Section 6 concludes the paper with a
discussion.

2 Null-Space Smoothing

2.1 Formulation

We review our basic framework for surface mesh smoothing, referred to as
null-space smoothing, proposed previously in [15]. This technique smooths a
surface mesh by moving each vertex within a null space, which in general is
a plane, a line, or the empty set, tangential to the surface at the vertex. Let
T denote a matrix whose column vectors are the bases of the null space, and
let c denote the vector from v to the centroid (or a weighted average) of its
neighborhood. The null-space smoothing moves v toward the centroid within
the null space for a displacement t, i.e.,

t = TTT c. (1)

We define the null space using an eigenvalue analysis of a metric tensor.
At each vertex v, suppose v is the origin of a local coordinate frame, and m
be the number of the faces incident on v. Let N be an m×3 matrix whose ith
row vector is the unit outward normal to the ith incident face of v, and W
be an m×m diagonal matrix with Wii equal to the weight (such as the face
area) associated with the ith face. Let A denote NT WN, which we refer to as
the quadric metric tensor, for its use in the well-known quadric error metric
[14]. A is symmetric positive semi-definite (i.e., xT Ax ≥ 0 for any vector x),
and its eigenvalue decomposition [10] is

A = VΛVT , (2)

where its eigenvalues λi = Λii are all real and nonnegative, and its correspond-
ing eigenvectors ei are the column vectors of V. We refer to the vector space
spanned by the eigenvectors corresponding to relatively large eigenvalues of
A as its primary space and the complementary space as its null space.

In general, the null space at a vertex is tangent to the surface. For suf-
ficiently fine meshes, the null space has dimensions 2, 1, or 0 at a smooth,
ridge, or corner vertex, respectively, so it is essentially the tangent space of
the surface at a vertex. For relatively coarse meshes, however, it is in general
a subspace of the tangent space (e.g., it may be a line along the direction
of minimum curvature in the tangent plane). Null-space smoothing moves a
vertex within the tangent plane or along the direction of minimum curvature,
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and therefore it tends to preserve sharp features and areas with large curva-
tures. In addition, it stops changing a surface after the mesh has converged
tangentially. Therefore, null-space smoothing is expected to work well and
typically introduce negligible perturbation to a surface in practice.

2.2 Analysis of Null-Space Smoothing

We now analyze the error in null-space smoothing more formally in terms of
volume change. Consider moving a vertex v by a displacement t. Let ai and
ni be the area and unit normal of the ith incident face of v, respectively, and
assume Wii = ai. The volume change is δV =

∑m
i=1 ainT

i t/3 = ‖WNt‖1/3.
From the definition of A, we have the singular value decomposition [10]

√
WN = U

√
ΛVT , (3)

where U is an m×3 matrix, and
√

W is the diagonal matrix whose ith diagonal
entry is the square root of Wii (and similarly for

√
Λ). Let sT = ‖

√
WU‖1,

and then,

3δV = ‖WNt‖1 = ‖
√

WU
√

ΛVT t‖1 =
3∑

i=1

si

√
λi(tT ei). (4)

If the mesh is coarse, then si (and similarly for tT ei) may have compara-
ble sizes for different i, so null-space smoothing introduces a relatively small
volume change proportional to the square roots of the smallest eigenvalues.
Assume the mesh is relatively uniform and let h be a measure of the average
edge length. Following an analysis similar to that in [14], it can be shown
that as h approaches 0, the largest eigenvalues are O(h2) but the smallest
eigenvalues corresponding to the null space of A are O(h4). In addition, tT ei

is O(h2), so δV is O(h4) in null-space smoothing with a positional error of
O(h2) even near singularities. If t contained a component corresponding to
larger eigenvalues (such as in Laplacian smoothing), then δV would be O(h3)
with a positional perturbation of O(h) near singularities. Therefore, null-space
smoothing works significantly better than Laplacian smoothing.

3 Volume Conservation

Moving one vertex in null-space smoothing preserves the potential second-
order accuracy of a surface triangulation. However, moving the vertices for
many iterations may still degrade the order of accuracy. We propose an ex-
tension of null-space smoothing to reduce the volume error further. Our basic
idea is to add a small component within the primary space at the vertex to
correct the volume while preserving the singularities of the surface. If we move
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each vertex one by one (i.e., updating in a Gauss-Seidel style), then the prob-
lem is relatively simple: we just need to determine a direction d in the primary
space and then a length α, such that α‖WNd‖1 = −‖WNt‖1, because from
(4) it is obvious that moving the vertex by αd+ t leads to no volume change.
If all vertices are moved concurrently (i.e., updating in a Jacobi style, which is
advantageous for its preservation of symmetry and ease of parallelization), we
may determine the direction for each vertex independently but the distances
of their movement must be solved concurrently. In the following, we will first
describe how to determine the directions that are applicable to both Gauss-
Seidel and Jacobi styles, and then present how to compute the motion in the
Jacobi style.

3.1 Estimation of Directions

Let us first consider the problem of estimating a direction at each vertex. The
key requirement of this direction is that it must be in the primary space. In-
tuitively, one might determine a weighted average of face normals and project
it onto the primary space, but a naive implementation may be sensitive to
weights and hence prone to artifacts near singularities. It is desirable to find
a direction that is well behaved near singularities so that it does not vary
abruptly between two neighboring ridge vertices.

We compute the directions using a mean normal based on an extension of
the preceding eigenvalues analysis. Suppose all the faces are offset outwards
for a unit distance, and the intersection of the planes passing through the
offset faces incident on a vertex v is then the solution to an m × 3 linear
system

Nx ≈ 1. (5)

Since N may be over- or under-determined, we reformulate it in a least squares
sense and obtain a 3× 3 linear system

Ax = b, (6)

where b = NT W1. Let k denote the dimension of the primary space, and as-
sume λ1 ≥ λ2 ≥ λ3. Generally speaking, k is one, two, and three at a smooth,
ridge, and corner vertex, respectively, but may be smaller for extremely shape
ridge or corner vertices where λ2 or λ3 is too small compared to λ1 (e.g.,
≤ ελ1 for ε ≈ 0.003). By restricting x to be within the primary space, the
solution to (5) is then

x ≈
k∑

i=1

eT
i bei/λi, (7)

which is numerically more stable by avoiding division by very small numbers.
If k = 1 (i.e., the surface is smooth at the vertex), then x reduces to the first
eigenvector, which converges to the outward surface normal. If k > 1 (i.e., the
surface is singular at the vertex), then x approximately points to the medial
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axis of the surface and in turn approximately bisects the tangent planes at
the singularity. For these reasons, x provides a good estimation of normals
and is well behaved at singularities, and therefore we use d = x/‖x‖ as the
direction at each vertex for volume correction.

3.2 Concurrent Vertex Motion

After obtaining the direction at each vertex, we must then solve for the dis-
tance α that each vertex moves. In a Gauss-Seidel-style iteration, α is sim-
ply −(bT t)/(bT d) at a vertex, which is similar to the single-node relaxation
method in [19]. For Jacobi iterations, however, the problem is more difficult
because the volume swept by each face is in general nonlinear in the dis-
placements of the vertices. Although a naive technique such as rescaling the
domain or making α uniform for all vertices may restore the total volume
in a global sense, it has no physical meaning and may undermine accuracy.
We propose a new approach that formulates volume conservation in a local
sense to obtain a system of equations and then solves the equation efficiently
using a simple iterative procedure. Although our focus is mesh smoothing, we
present our formulation in a general form so that it can be easily adapted to
other settings.

Suppose a volume flux (or mass flux) ε is given over a surface (where the
flux may be due to the tangential motion in the null-space smoothing or other
types of surface motion). We define a numerical flux f at each face to be the
gain or loss of volume per unit area, i.e.,

f =
(∫

e′
xT n′ dx−

∫

e

xT n dx
)

/

∫

e

1dx, (8)

where e and e′ denote the face before and after adding the normal motion
αd at the vertices, and n and n′ denote their unit normals, respectively. Our
objective is to make the numerical flux f as close to the prescribed flux ε as
possible, i.e., f ≈ ε. Using a weighted-residual method, we obtain a weak form
by requiring the error f − ε project orthogonally onto the function space of
the basis functions of the mesh, i.e.,

∫
(f − ε)ωi dΓ = 0 (9)

for each shape function ωi of the mesh. From the summation property∑
i ωi = 1, this weak form of local volume conservation enforces global volume

conservation strictly, i.e.,
∫

f dΓ =
∫

εdΓ .
Given a triangle e = p0p1p2, let d̃i = αidi and qi = pi+d̃i. Let t1 = p1−

p0, t2 = p2 − p0, and n = t1 × t2. Given the displacements, we can evaluate
the integral in (9) up to machine precision using numerical quadrature. To
analyze f , we decompose the prism between e and e′ into three tetrahedra,
p0p1p2q1, p0q1p2q2, and p0q1q2q0, as illustrated in Fig. 1. If di has the
same direction for all vertices, the swept volume V of e is then
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V =
1
6

(
nT d̃1 + (t1 + d̃1)× (t2 + d̃2) · (d̃0 + d̃2)

)

=
1
6

(
nT (d̃0 + d̃1 + d̃2) + (d̃1 × t2 + t1 × d̃2 + d̃1 × d̃2)T (d̃0 + d̃2)

)
,

which is a cubic function in αi. If di has different directions at different ver-
tices, each quadrilateral of the prism would be bilinear, but it still holds that
V = nT (d̃0 + d̃1 + d̃2)/6 + O(α2). Therefore, (9) leads to a nonlinear system
of equations in αi.

p0

p1

p2

q1

q2

q0

Fig. 1. Decomposition of prism swept
by face p0p1p2 into three tetrahedra

Fig. 2. Control volume for approximat-
ing numerical flux at vertex

To solve (9) efficiently, we use an efficient quasi-Newton method as follows.
Let us define the control volume of each vertex to be composed of one third of
each of its incident faces, as illustrated in Fig. 2. Let g =

∑
i αidT

i nHi, where
n denote the normal field over the surface, and Hi is a step function, which
is 1 in the control volume of the vertex and 0 elsewhere. Then

∫
fωi dΓ =∫

gωi dΓ + O(α2). Let D be the diagonal matrix, where

Dij =
∂
∫

gωi dΓ

∂αj
=
{

1
3d

T
i β if i = j
0 if i 
= j

, (10)

where β =
∑m

k=1 aknk (similar to b in (2) but may be integrated over a
different reference geometry). D approximates the derivative of

∫
fωidΓ with

respect to αj . Using Broyden’s method [13], α can be solved iteratively using
the secant equation

D
(
α(k+1) −α(k)

)
= r(k), (11)

where r(k) is the residual of the kth iteration, i.e.,

r
(k)
i = −

∫
(f(α(k))− ε)ωi dΓ,

with r
(1)
i =

∫
εωi dΓ . Because D is a diagonal matrix, this equation can be

solved very conveniently. In general, the convergence rate of Broyden’s method
is superlinear and hence this method is very efficient.
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We now plug in the above formulation into conservative mesh smoothing.
Let Γ denote the original surface mesh and Γ̃ denote the surface mesh after
tangential motion t. We use Γ̃ as the reference for the numerical integration.
Let Vγ(u) denote the swept volume of a surface γ due to nodal displacements
u. The above nonlinear system would then enforce that V

Γ̃
(d̃) = V

Γ̃
(−t) =

−VΓ (t), and hence

VΓ (t + d̃) = VΓ (t) + V
Γ̃
(d̃) = VΓ (t) + V

Γ̃
(−t) = VΓ (t)− VΓ (t) = 0. (12)

In summary, this conservative algorithm proceeds as following:

1. obtain intermediate surface mesh by moving vertices by t, and set d̃ = 0;
2. for each vertex v, compute

d̃v = d̃v −
∑

e Ve(d̃)−
∑

e Ve(−t)
∑

e aenT
e dv

dv; (13)

3. repeat step 2 until convergence.

On line 2, the volumes, areas, and normals are computed on the intermediate
surface mesh Γ̃ , and the summations are over the incident faces of v. This
quasi-Newton method in practice converges to nearly machine precision for
only very few iterations. This method does not require the quadric metric
tensor in (6) to be weighted by area, so alternative weighting schemes may
be used. Note that (13) may be unstable if nT

e di ≈ 0. This case is unlikely to
occur for our choice of d except at cusps, which are inherently unstable. So
vertices on cusps should in general be skipped in this procedure for robustness.

4 Feature Detection

In our preceding analysis, it is obvious that detection of geometric features
is critical in preserving high-order accuracy in mesh smoothing. In addition,
it is important to identify regions with relatively large curvature to reduce
errors for coarse meshes. Besides surface smoothing, feature detection also
plays an important role in many other geometric and numerical computations
involving surfaces, such as mesh generation and remeshing [1, 26], solution
transfer across different meshes [16], etc..

A number of feature detection techniques have been proposed in the lit-
erature, but most of the robust ones are relatively difficult to implement or
to integrate into application codes such as numerical simulations. We present
a robust feature-detection technique based on a singularity analysis of the
quadric metric tensor, which is an enhancement of our preliminary results in
[15]. This method is also based on the eigenvalue analysis and hence is par-
ticularly well-suited in our setting. In addition, it can be implemented using
only an element connectivity table and hence is easy to be integrated into
application codes even on parallel machines.
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4.1 Identifying Features

The relative sizes of the eigenvalues λi of A in (6) are closely related to
the local flatness at a vertex, as illustrated in Fig. 3, where the axes of the
ellipsoids are aligned with the directions of the eigenvectors and the semiaxes
are proportional to the eigenvalues. In general, A has three large eigenvalues
at a corner, two large ones at a ridge, and one large one at a smooth point. It
therefore seems natural to compare λ3/λ1 and λ2/λ1 against some thresholds
to identify corners and ridges. Such a process has been used previously in
processing image or meshes (such as “tensor voting” [21] and its variations
[22]). However, because the metric tensor A is unsigned, feature detection
based on eigenvalues alone cannot distinguish a near cusp (i.e., very acute
features) from a flat surface and hence is unreliable for surface meshes with
very sharp features.

Fig. 3. Correlation of eigenvalues and local flatness

We safeguard sharp features as follows. An acute corner can be safeguarded
by angle defect, denoted by θa, which is the difference between 2π and the
sum of the angles at the vertex in its incident faces. To safeguard acute ridges,
because the first eigenvector points toward the dominant direction of normals,
its projection onto the face normals would vary in signs. Let e1 point toward
the positive side of b (i.e., eT

1 b > 0). We classify a vertex v as follows:

1. if λ3/λ1 ≥ χc or |θa| ≥ π/2, then v is at corner;
2. if λ2/λ1 ≥ χr or e1n ≤ 0 in incident face, then v is on a ridge.

A tiny (close to zero) χc would classify all vertices as corners, and a large (close
to one) χc would classify no corners; similarly for χr and the classification of
ridges. Note that if the mesh has mesh folding or cusps, we can extend the
second step to report a cusp if λ2/λ1 � χr and e1n ≤ 0 in any face.

To obtain meaningful and intuitive values for χc and χr, we connect them
with the dihedral angle and open angle. For a ridge with dihedral angle θ ≤
π/2 (i.e., the arc-cosine of the inner product of the face normals), assuming
the weights in W are balanced along different sides of a singular point, the
eigenvalues satisfy λ2/λ1 ≈ tan2(θ/2) and λ3 ≈ 0. For a cone with an opening
angle π − ϑ (i.e., the vertex angle in the cross section through the apex and
center of the base), the eigenvalues satisfy λ3/λ1 ≈ λ2/λ1 ≈ 2 tan2(ϑ/2). This
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analysis provides a convenient way to choose the thresholds. Specifically, given
a user-specified dihedral-angle threshold φr (on θ) and open-angle threshold
φc (on ϑ), we then have χc = 2 tan2(φc/2) and χr = tan2(φr/2). For example,
if φr = 15◦ and φc = 45◦, then χr ≈ 0.03 and χc ≈ 0.2. Note that these
thresholds assume that the weights in A are well balanced. For well-graded
meshes, which are typically used in finite element analysis, the area weighting
would suffice. For nonuniform meshes, as sometimes used in rapid prototyping,
the angle weighting delivers more balanced weights (i.e., setting Wii in (2) to
be the angle at vertex v in its ith incident face).

4.2 Filtering Noise

The above feature-detection technique may be sensitive to noise, as it considers
the eigenvalues at different vertices independently. It is therefore important
to have additional rules to filter out false features and patch missing ones.
We achieve this goal by identifying the ridge edges and using the connectivity
among the ridge edges and feature vertices. We consider an edge as a candidate
ridge edge if its dihedral angle is not too small (e.g., > φr) and consider a
ridge vertex to be strong if it is connected to another ridge or corner vertex
by a candidate ridge edge. If the dihedral angle of a candidate edge is large
(e.g., > φc), we immediately accept it as a ridge edge. Otherwise, we accept a
candidate edge if it is incident on a strong ridge vertex v and its direction is the
closest to the third eigenvector at v (i.e., the inner product of the tangential
direction of this edge with the eigenvector is either the positive maximum or
the negative minimum among all the candidate edges incident on v).

After identifyig ridge edges, we then employ them to filter out false feature
vertices, based on the observation that a ridge edge usually points toward a
ridge or corner vertex. The filtration proceeds as follows:

1. for each vertex, count the number k of incident ridge edges;
2. upgrade a vertex to a corner if k > 2;
3. upgrade a smooth vertex to a ridge if k = 2;
4. downgrade a ridge vertex to smooth vertex if k < 2 except for acute ridge

vertices (i.e., eT
1 n ≤ 0);

5. after reclassfying all vertices, downgrade a ridge edge if neither of its
incident vertices is a ridge or corner vertex;

This procedure tends to identify the systematic patterns of ridge curves in
the mesh and filter out isolated false features. If the surface is very noisy, we
can reduce the sensitivity of the eigenvalues by computing the metric tensor
A as the sum of the tensors of itself and its neighboring ridge vertices and
then repeat the classification and filtration procedure. Note that this whole
detection procedure can be implemented easily by iterating through the faces
or vertices. It does not require advanced data structures (such as the half-edge
data structure) other than the standard element connectivity tables, so it is
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particularly convenient to be integrated into numerical simulations even on
parallel computers.

5 Experimental Tests

In this section, we report some experimental tests of our feature detection
and conservative mesh smoothing methods. Our formulations are not limited
to specific schemes for computing the centroid at each vertex. For simplic-
ity, in our tests we use Laplacian smoothing, which computes the centroid
as the average of the neighboring vertices at each vertex, but more sophisti-
cated schemes may be used instead. Figure 4 shows the results of smoothing
a surface mesh with a relatively simple geometry with sharp features to study
the convergence of our method. During the process, the sharp ridges and
corners are automatically identified using our feature detection technique.
Four meshes of different resolutions are used and smoothed for 1000 itera-
tions each with two volume-correction steps at each iteration. The left image
in Fig. 4 shows the meshes before and after conservative smoothing drawn
on top of each other. It is obvious that many vertices moved for a nontrivial
distance at smooth regions and along ridges, but the surface remained on top
of each other. The right image in Fig. 4 shows the convergence of volume
errors using null-space smoothing and conservative smoothing with one, two
or three volume-correction steps, where the x-axis corresponds to the four dif-
ferent meshes. The convergence rate of null-space smoothing is roughly linear
with respect to grid refinement, while conservative smoothing converges faster
than fourth-order and its error decreases rapidly as the number of volume-
correction steps increases. Figure 5 shows the results of another example using
a triple-torus, in which the features are less salient. We show the input meshes
and the close-up views of the meshes before and after smoothing near a joint
between the tori. The relative volume error was 2.59× 10−8 after 500 steps of
conservative smoothing with three iterations of correction steps. The geom-
etry was clearly preserved after smoothing even with substantial tangential
motion, owing to the weighted-residual formulation to minimize local errors.

To demonstrate the effectiveness of our feature detection technique, Fig. 6
shows the results of feature detection for three mechanical parts with fine fea-
tures, obtained from http://www-c.inria.fr/Eric.Saltel/download/. The left
images of Fig. 6 show the input meshes and the right images show in translu-
cency the features detected by our method. In all the examples φr was chosen
to be 15◦. The first two examples (referred to as “thepart” and “fan1” in the
mesh colletion) are fairly representative for the coarse meshes commonly used
in rapid prototyping or stereolithography. Our method accurately identified
all the salient features. The third example uses a typical finite-element mesh
of the “fandisk,” and remarkably some very fine features were identified by our
method without any artifacts, while the commonly-used angle-based methods
may have difficulties.
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Fig. 4. Conservative smoothing of notched sphere and convergence study. In left
image, dashed blue edges correspond to input mesh and solid green edges correspond
to smoothed mesh

(a) Overall geometry. (b) Before smoothing. (c) After smoothing.

Fig. 5. Sample result of conservative smoothing of triple torus

6 Conclusion

In this paper, we presented novel techniques to conserve volume and preserve
features in mesh optimization. Our techniques are based on an eigenvalue
analysis of the quadric metric tensor. Due to their unified theoretical foun-
dation, the analysis of our technique is relatively simple and coherent. More
importantly, our techniques are easy to implement and does not required
sophisticated data structures (such as the half-edge data structure) and ex-
pensive geometric algorithms (such as high-order surface reconstruction and
point location), so they are particularly suitable to be integrated into numeri-
cal simulations. The proposed volume-conservation technique is also promising
to generalize to other moving surfaces with a source term. In this paper, we
only reported experimental results using Laplacian smoothing to compute the
centroids around each vertex, but more sophisticated schemes can be used
and are currently being investigated.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Sample results of detecting features in mechanical parts
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