
Mesh Modification Under Local Domain
Changes∗

Narćıs Coll, Marité Guerrieri and J. Antoni Sellarès

Departament d’Informàtica i Matemàtica Aplicada, Universitat de Girona,
{coll,mariteg,sellares}@ima.udg.es

Summary. We propose algorithms to incrementally modify a mesh of a planar do-
main by interactively inserting and removing elements (points, segments, polygonal
lines, etc.) into or from the planar domain, keeping the quality of the mesh during
the process. Our algorithms, that combine mesh improvement techniques, achieve
quality by deleting, moving or inserting Steiner points from or into the mesh. The
changes applied to the mesh are local and the number of Steiner points added during
the process remains low. Moreover, our approach can also be applied to the directly
generation of refined Delaunay quality meshes.

1 Introduction

In many two-dimensional geometric modelling problems it is desirable to ob-
tain a triangular mesh that respects the domain of interest ensuring that the
triangles of the triangulation satisfy some quality requirements. There exist
many works on the generation of a quality mesh for a Planar Straight Line
Graph (PSLG) domain. Delaunay refinement mesh generation algorithms have
taken place in this frame of investigations [12, 13, 11, 7]. In keeping quality
of a mesh two objectives are pursued. First, get skinny triangles, triangles
without the required quality, out of the mesh. Second, force segments of the
PSLG into the mesh. Both goals are achieved by the addition of Steiner points,
points that do not belong to the original mesh. In current Delaunay refinement
algorithms, two kinds of Steiner points deal with the former goal, namely, cir-
cumcenters and off-centers. The later objective is carried out by the addition
of midpoints on constrained segments to insert. Local optimization techniques,
like refinement, derefinement, topological changes and mesh smoothing, are
employed usually as a postprocess to improve mesh quality [1, 5].

In this work we address the problem of adjusting a mesh to local changes
of its domain. The initial motivation for this problem came from our interest

∗Partially supported by the Spanish Ministerio de Educación y Ciencia under
grant TIN2004-08065-C02-02.

40 N. Coll et al.

on the simulation of cuts in triangulated objects. We modify a quality mesh of
a PSLG under the insertion/removal of elements (points, segments, polygonal
lines, etc.) to/from the PSLG, while keeping the quality of the mesh along the
process. There exist some work related to the dynamic insertion and deletion
of points and segments on Delaunay triangulations [6, 8], although they do
not fit into the schema of Delaunay refinement algorithms.

Obviously, when a PSLG is changed, we can use a Delaunay refinement
algorithm to modify the underlying mesh: the updated PSLG can be consid-
ered as input PSLG and a new mesh can be generated from scratch. However,
when a PSLG is dynamically modified, apart of the quality requirement of its
underlying mesh, we expect that additional features are going to be provided,
namely:

Incrementality: The mesh of the updated PSLG is obtained without the
regeneration of the whole mesh.

Locality: The changes applied to the mesh do not imply a propagation
of these modifications to the whole mesh.

Optimality: The Steiner points added as a result of the modification of
the mesh should be as few as possible.

A possible incremental solution to the insertion problem, alternative to
generate a new mesh from scratch, is to apply a Delaunay refinement algorithm
to the PSLG obtained joining: the current PSLG, the Steiner points of the
current mesh and the elements to be inserted into the PSLG. In this way we
can take advantage of the work done during the generation of the current
mesh. However, considering Steiner points of the current mesh as part of the
new PSLG contributes to the degradation in the distribution of Steiner points
in successive updates of the mesh, generating a high number of small triangles,
as we will show with some examples below. Suppose we have an initial PSLG
composed of a square boundary and two points a and b (Figure 1(a)). After
applying Ruppert’s Delaunay refinement algorithm we obtain the mesh shown
in Figure 1(b). The insertion of a new point, c, onto the PSLG close to an
existing Steiner vertex, s, creates two new skinny triangles that have to be
refined (Figure 1(c)). Then, an incremental Delaunay refinement algorithm
generates the mesh in Figure 1(d).

The solution we propose to avoid the excessive insertion of vertices and the
generation of small triangles produced by a degradation in the distribution
of points in successive updates of the mesh is the deletion or the movement
of Steiner vertices, followed if necessary by the addition of Steiner vertices
according to Ruppert’s algorithm. In Figure 1 we can compare the previous
result of applying a Delaunay incremental refinement algorithm, Figure 1(d),
with the movement of the Steiner vertex s to a suitable zone, in Figure 1(e),
and with the deletion of the Steiner vertex, shown in Figure 1(f). From these
examples one can observe that moving the vertex results in a much better
mesh than in the case of using the incremental algorithm, but the optimal
solution is obtained by the deletion process. This suggests that removal of

Mesh Modification Under Local Domain Changes 41

a
b

a
b

c s

(a) (b) (c)

a
b

c

s

a
b

c

(d) (e) (f)

Fig. 1. (a) An initial PSLG composed of a square boundary and two points. (b)
A Delaunay refined triangulation of the PSLG. (c) A new point to be added to the
mesh with the skinny triangles associated to its insertion in grey. (d) The resulting
mesh after applying an incremental Delaunay refinement algorithms to the mesh in
Figure 1(c). (e) Result obtained if the Steiner vertex is moved to a suitable region.
(f) Mesh achieved if the Steiner vertex is deleted.

Steiner vertices will therefore have priority in front of movement of Steiner
vertices.

In this paper we introduce a framework, that combines mesh improve-
ment techniques, for modifying incrementally a mesh under local changes
of its PSLG domain. Starting from a quality mesh of the initial PSLG, we
insert/remove elements to/from the PSLG in such a way that as the PSLG
changes the underlying mesh is modified keeping its quality during the process.
Our algorithms make only local modifications: deletion, movement or inser-
tion of Steiner points from/into the mesh. Moreover, the number of Steiner
points added during the process remains low.

One of the main ideas behind our proposed algorithms is that the bad
vertex of some skinny triangles can be moved to a quality zone ensuring that
a prefixed mesh quality is obtained. We give a numerical method for finding
the optimal placement where the vertex has to be moved.

42 N. Coll et al.

Our framework can also be applied to directly generate refined Delaunay
quality meshes. We give initial experimental results showing that the num-
ber of Steiner points obtained with our approach is smaller compared to the
number obtained when traditional circumcenter refinement methods are used.

2 Preliminaries

A Planar Straight Line Graph (PSLG) is a set of points and segments satisfy-
ing two constraints: all endpoint segments are points in the PSLG, segments
may intersect each other only at their endpoints.

A triangulation T is a conforming triangulation of a PSLG, Ω, if each
point in Ω corresponds to a vertex in T , and a segment of Ω is represented by
a linear contiguous sequence of edges of T . New Steiner vertices, not points of
Ω, may appear, and each segment of Ω may have been subdivided into shorter
edges by these additional vertices. Flipping these edges is forbidden, then they
are marked as locked. In a conforming Delaunay triangulation of a PSLG, the
Steiner vertices are added so that the Delaunay property is maintained.

The star of a vertex q, Sq, of a triangulation T consists of all the triangles
of T that contain q. The link of q, Lq, is the polygon determined by the set
of edges of the triangles in Sq that are not incident to q. Since the average
degree of a node in a planar graph is less than six [3], the average number
of triangles of Sq or the average number of edges of Lq, is at most six. The
kernel of Lq, denoted by ker(Lq), is the set of all points p ∈ Lq, such that for
every vertex v of Lq, the segment vp is within Lq.

Given an edge e ∈ Lq, being ei and ef its endpoints, we take the following
notation (see Figure 2):

• Hq,e is the open half-plane determined by e and containing the vertex q.
• tq,e is the triangle with vertices ei, ef and q.
• t′q,e the adjacent triangle to tq,e by e.
• cq,e the circumcircle of t′q,e.
• aq,e the arc cq,e∩Hq,e. We will say that cq,e is the supporting circle of aq,e.

A triangle having an angle β < α, for certain fixed α, is called skinny.
The diametral circle of a subsegment (portion of a segment from a PSLG)

is the (unique) smallest circle that contains the subsegment.
A subsegment is said to be encroached if a vertex lies strictly inside its

diametral circle, or if the subsegment does not appear in the triangulation.

2.1 Incremental Delaunay Algorithm

There exists three types of algorithms for constructing Delaunay triangula-
tions, namely, divide-and-conquer, sweepline and incremental. Because of our
goals we concentrate our attention in the latter ones.

Mesh Modification Under Local Domain Changes 43

tq,e

ejei

q

aq,e

e
Hq,e

tq,e

cq,e

Fig. 2. Notation used in the definitions.

Incremental algorithms add vertices one by one and update the triangu-
lation after each vertex is added maintaining the Delaunay property. The
original algorithm, developed by Lawson [9], is based upon edge flips. There
are incremental algorithms due to Bowyer [2] and Watson [14] that do not use
edge flips. In Lawson’s algorithm, when a vertex is inserted, the triangle that
contains it is found, and three new edges are inserted to attach the new vertex
to the vertices of the containing triangle. If the new vertex falls upon an edge
of the triangulation, that edge is deleted, and four new edges are inserted to
attach the new vertex to the vertices of the containing quadrilateral. Next, a
recursive procedure tests whether the new vertex lies within the circumcircles
of any neighboring triangles, each affirmative test triggering an edge flip that
removes a locally non-Delaunay edge. Each edge flip reveals two additional
edges that must be tested.

2.2 Ruppert’s Algorithm

The Delaunay refinement algorithm, first described by Ruppert [12], refines
the mesh by inserting additional Steiner vertices (using Lawson’s algorithm
to maintain the Delaunay property) until all triangles satisfy the quality con-
straint. Vertex insertion follows two rules:

• Any encroached subsegment is bisected by inserting a vertex at its mid-
point.

• Each skinny triangle is normally split by inserting a vertex at its circum-
center. The Delaunay property guarantees that the triangle is eliminated.
However, if the new vertex would encroach upon any subsegment, then it
is not inserted; instead, all the subsegments it would encroach upon are
split.

44 N. Coll et al.

Encroached subsegments are given priority over skinny triangles.

Ruppert’s algorithm guarantees the following properties:

• Edges of the mesh well-graded. New edges generated are greater than the
smallest distance between two non-incident features of the input PLSG.

• Optimal size of the mesh. The number of Steiner points added is within a
constant factor of the minimum number of points added by any meshing
of the same input.

• Termination. In order to ensure Ruppert’s algorithm termination the up-
per bound for α is arcsin 1

2
√

2
≈ 20.7◦, angles between incident segments

in the input PSLG greater or equal than 90◦ are required, and co-circular
points are not allowed. Shewchuk [13] relaxes this minimum angle require-
ment to 60◦. Pav, in [11], showed that the algorithm terminates for a wider
class of input than previously suspected, establishing this bound in 45◦.
In fact, other considerations have to be taken into account with respect to
the input, but they rarely appear in practice.

3 Quality Zones

One of the main ideas behind our proposed algorithms is that some skinny
triangles can be eliminated by moving the Steiner points corresponding to
their bad vertex. The solution relies on the fact that, for a given Steiner
vertex, it is possible to define a zone where it can be moved ensuring that a
prefixed mesh quality can be obtained. To make sure that the result is a valid
triangulation, a Steiner vertex q has to be moved to a point in ker(Lq) and
then the Delaunay property among the new triangles has to be maintained
by flipping locally non-Delaunay edges.

3.1 Definitions

Let T be a Delaunay refined triangulation of a PSLG and α be a given quality
angle.

The feasible zone of an edge e ∈ Lq for an angle β is the set Fe,β = {p ∈
Hq,e|êipef ≥ β, p̂efei ≥ β, êfeip ≥ β} (see Figure 3(a)).

As can be observed in Figure 3(a), the feasible zone is a convex region
obtained as intersection of two half-planes and a circle. Let d be the point
in Hq,e such that eiefd is an isosceles triangle with d̂eief = êiefd = β. One
half-plane is defined by the line through ei and d that does not contain ef ,
and the other half-plane is defined by the line through ef and d′ that does
not contain ei. The center f of the circle is the point of Hq,e located on the
bisector of eief , such that êifef = 2β. Then, from a well known geometric
property, at any point p on the circle boundary the following expression is
satisfied: êipej = β.

Mesh Modification Under Local Domain Changes 45

The feasible zone of a vertex q for an angle β is the set Fq,β =
⋂

e∈Lq
Fe,β .

The non-skinny zone of a vertex q is the set Fq,α.
The Delaunay zone of an edge e ∈ Lq, denoted Dq,e, is the set of points of

Hq,e external to cq,e (see Figure 3(b)).

β

Hq,e

ejei

2β

β β

β

d d

β tq,e

e

efei

(a) (b)

Fig. 3. (a) A feasible zone Fq,e,β . (b) Delaunay zone Dq,e.

The Delaunay zone of a vertex q is the set Dq =
⋂

e∈Lq
Dq,e.

The Delaunay zone of a vertex is an open non-convex set and, as exhibited
in Figure 4, may be constituted by several non-connected components. The
boundary of Dq will be denoted by Dq.

Fig. 4. Delaunay zone with two non-connected components.

The quality zone of a vertex q for the angle α is the set Qq,α = Fq,α

⋂
Dq

(see Figure 5).
From the last definition it is clear that if p ∈ Qq,α then the triangles of Sp

are non-skinny and the exterior adjacent triangles to Lp edges are Delaunay.
It is not difficult to prove the following:

Lemma 1. Let q be a vertex of a triangulation T . Then, we have:

• If Fq,β
= ∅, Fq,β is a convex set included in ker(Lq).
• If Fq,β
= ∅ and β′ > β, Fq,e,β′ � Fq,e,β and Fq,β′ � Fq,β.

q

46 N. Coll et al.

q

Fig. 5. Quality zone Qq,α

3.2 Finding a Point That Maximizes the Minimum Angle

Let p be a point in ker(Lq). We denote by Tq(p) the set of triangles determined
by p and the edges of Lq. If Lp is formed by k edges, we have a collection of
3k angular functions φj(p), j = 1, · · · , 3k, each one representing an angle of a
triangle of Tq(p).

We are interested in finding a point p̃ ∈ ker(Lq) ∩ Dq maximizing the
function Φ(p) = minj φj(p). When instead of searching for the point p̃ ∈ Dq

we seek a point p∗ ∈ ker(Lq), we have a collection of quasiconvex functions
and the problem can be solved in O(k) time using Generalized Linear Pro-
gramming [1].

Then, we first find the point p∗. If p∗ ∈ Dq then p∗ is the optimal solution
p̃. Otherwise we find the point p that maximizes the function Φ(p) restricted
to Dq and we take a point inside Dq close to p as the target point p̃.

Instead of implementing the Generalized Linear Programming approach
for finding p∗, we describe an alternative numerical technique for solving the
problem directly that also allow us to find p if it is necessary. The technique
is based on the following lemmas:

Lemma 2. Let l be a line such that l ∩ Fq,β
= ∅. Then, we have:

1. l ∩ Fq,β is a point or a segment.
2. If l ∩ Fq,β is a segment, the midpoint m of l ∩ Fq,β satisfies Φ(m) ≥ β.

Proof. Let s = l∩Fq,β . Since l∩Fq,β is a convex set, s is a point or a segment.
Let m be the midpoint of s. Suppose that Φ(m) < β. By Lemma 1 we know
that Fq,β ⊂ Fq,Φ(m) and consequently m is an interior point of Fq,Φ(m), which
is contradictory with the fact that m is on the boundary of Fq,Φ(m).

Lemma 3. Let aq,e be a Delaunay arc whose supporting circle cq,e contains
p∗. Let p′ be the point that maximizes φ(p) restricted to aq,e, and let p be the
point that maximizes φ(p) restricted to Dq. If p′ ∈ Dq then φ(p′) = φ(p).

Mesh Modification Under Local Domain Changes 47

Proof. Since p′ ∈ Dq, clearly φ(p′) ≤ φ(p). Suppose φ(p′) < φ(p). Since p′

maximizes φ(p) restricted to aq,e, Fq,φ(p′) is tangent to cq,e at p′. Moreover,
due to that Fq,φ(p′) is convex, cq,e, p∗ ∈ Fq,φ(p′) and p∗ ∈ cq,e, we have
Fq,φ(p′) ⊂ cq,e. By Lemma 1 we have Fq,φ(p) � Fq,φ(p′), consequently Fq,φ(p̃) �

cq,e, which is contradictory with the fact that p ∈ Dq.

The maximizing algorithm consists of two main steps, first we find the
point p∗ that maximizes Φ. If p∗ happens to lie inside the Delaunay Zone, Dq,
then it is the target point p̃; on the contrary we have to find p onDq. Both steps
are based on the optimal gradient method that progressively approaches the
point maximizing a function. This method needs the direction v(p) in which
the function increases more quickly. In our case we approximate v(p) as follows
(see Figure 6):

1 Determine the minimum angle β of Tq(p).
2 If β is adjacent to p, let v(p) be the direction of its angle bisector.
3 If β is not adjacent to p, let r be the vertex of β and let v(p) be the

perpendicular vector to rp satisfying that the half-plane determined by p
and v(p) does not contain the other vertex of the triangle.

p
β

v(p)
p

β

v(p)

Fig. 6. On the left, β is adjacent to p and increases in the direction of its angle
bisector. On the right, β is adjacent to an edge of Lq and increases in the direction
perpendicular to the edge adjacent to p and β.

Figure 7 illustrates the first step of the maximizing algorithm that finds
p∗ based on Lemma 2. Let pk be the point obtained after the k-th iteration
of the algorithm. The point q is used to compute the initial iteration p0. The
point pk+1 is computed from pk by applying the following steps:

1 Compute the minimum angle βk of Tq(pk) and the vector v(pk).
2 Compute the feasible zone Fq,βk

.
3 Compute the segment s as the intersection between Fq,βk

and the half-line
determined by pk and v(pk).

4 Take pk+1 as the midpoint of s.

The algorithm finishes when the distance between pk and pk+1 is lesser than
ε and the difference between βk and βk+1 is lesser than δ, where ε and δ are
parameters that permit controlling the accuracy of the solution.

48 N. Coll et al.

p∗

v()pk

pk

Fq,βk

pk+1s

Fig. 7. First step of the maximizing algorithm.

Figure 8 illustrates the second step of the maximizing algorithm, based on
Lemma 3, that finds a point p on Dq maximizing Φ(p). Let aq,e be a Delaunay
arc whose supporting circle cq,e contains p∗. Any point of aq,e is qualified to
compute the initial iteration p0.

pk

s

pk+1

v(pk)p∗

C

aq,e

e

Fq.βk

pk

pk+1
p∗

v(pk)

e
C

aq,e

(a) p1 ∈ aq,e. (b) p1 �∈ aq,e.

Fig. 8. Second step of the maximizing algorithm.

There are two cases for computing pk+1 from pk. The first one is triggered
when pk lies on aq,e (see Figure 8(a)). In this case we apply the following
steps:

1 Compute the minimum angle βk of Tq(pk) and the vector v(pk).
2 Compute the orthogonal projection v of v(pk) onto the tangent line to cq,e

at pk.
3 Compute the feasible zone Fq,βk

.
4 Compute the segment s intersection between Fq,βk

and the half-line de-
termined by pk and v.

5 Take pk+1 as the midpoint of s.

Mesh Modification Under Local Domain Changes 49

The second case occurs when pk does not lie on aq,e (see Figure 8(b)). In this
case the point pk+1 is taken as the intersection point between aq,e and the
half-line determined by pk and v(pk).

Only when the point p lies on Dq, the point p̃ is taken as the last itera-
tion point not lying on aq,e. Then, the described process must be applied to
Delaunay arcs whose supporting circle contains p∗ until the point p̃ is found.
If the process fails for all these arcs, we compute the set P of the intersection
points between the arcs, and we take p̃ as an interior point of Dq very close
to the point of P maximizing Φ(p).

4 Basic Operations

Movement and deletion of Steiner points are the basic operations used by our
improvement process. Steiner points to be treated by the process can belong
to two main groups. The first group is formed by the Steiner points located on
any segment of the PSLG, and the second group is formed by the remaining
Steiner points. We have named restricted vertices the points of the first group,
since their movement will be restricted to the corresponding segment, and free
vertices the points of the second group.

4.1 Moving Free Vertices

The key concept regarding the movement of a free vertex q is to substitute this
vertex by the best point in the quality zone Qq,α, being α the quality of the
mesh. Then, we have to find a point p̃ ∈ Dq maximizing the function Φ(p) and
satisfying Φ(p̃) ≥ α. In order to do that, we apply the maximizing algorithm
explained in the previous section. Observe that the simple insertion of p̃ into
the triangulation guarantees that exterior triangles to Lq are Delaunay, but
does not guarantee the Delaunay property among interior triangles. For this
reason, the vertex q has to be deleted and the vertex p̃ has to be inserted
using an Incremental Delaunay algorithm. Then, it is possible that Lp̃
= Lq

and, consequently, Φ′(p̃) ≥ Φ(p̃), where Φ′(p) is the function to be maximized
in the interior of Lp̃. In this case, we initiate an iterative process that in
each step updates q with the vertex p̃ obtained in the previous step, applies
the optimizing algorithm to q and inserts the new p̃ using an Incremental
Delaunay algorithm. The process finishes when Lp̃ = Lq. Only when the final
p̃ satisfies Φ(p̃) ≥ α, the point p̃ is inserted into the mesh as a Steiner vertex.

4.2 Deleting Free Vertices

Devillers in [4] proposed an algorithm to delete a point from a Delaunay trian-
gulation. Basically, his algorithm retriangulates Lq by determining Delaunay

50 N. Coll et al.

ears using the concept of power of q. In our case we need to obtain not just a
Delaunay triangulation, but a Delaunay refined one. Consequently we verify
whether the Delaunay ear is skinny or not, stopping the process when a skinny
one is found.

4.3 Moving Restricted Vertices

The movement of restricted vertices is constrained over their correspondent
subsegments. This kind of vertices can be present on a boundary subsegment
or on a non-boundary subsegment of a PSLG. Since the optimizing algorithm
can easily be adapted in order to guarantee that the vertex p̃ lies on the
subsegment, in both cases we apply the iterative process explained in Section
4.1.

4.4 Deleting Restricted Vertices

Deletion of a restricted vertex depends on whether it belongs or not to a
boundary subsegment of the PSLG. The presence of a restricted vertex on a
non-boundary subsegment implies the application of the deletion algorithm
explained in Section 4.2 to the two sides of the subsegment independently.
In this way the point is deleted only if each side independently fulfills the
point deletion verification, and then the region in each side is retriangulated
individually. The same steps from the algorithm of Section 4.2 can be carried
out without changes, with the only extra consideration that a restricted vertex
on a subsegment can not be deleted if a vertex of its link is encroached by the
subsegment. In case of a boundary subsegment the process detailed above is
applied only to the interior side.

4.5 Expanding Deletion of Vertices

Once a vertex has been deleted from the mesh other vertices are susceptible
of deletion. Each time a vertex is deleted all its adjacent Steiner vertices are
added to a queue to be deleted, causing in this way several iterations. The
iteration process ends when none of the vertices in the queue can be deleted.

5 Modifying a Delaunay Refined Mesh

Modification of a Delaunay refined mesh means to insert new PSLG elements
into the mesh or delete PSLG elements from the mesh. The elements can be
points, segments, polygonal lines and polygonal holes.

An element is inserted in the mesh by inserting its points and then checking
if each segment of the element is a sequence of edges of the mesh. If the check
fails, the segment is inserted by a recursive process that adds its midpoint and

Mesh Modification Under Local Domain Changes 51

checks if the two subsegments are edges of the mesh. The edges corresponding
to segments are marked as locked. When the element is a polygonal hole, the
triangles located in the interior of the hole are deleted.

An element is deleted by marking its edges as unlocked, considering its
points Steiner vertices and trying to delete them by using the Devillers algo-
rithm. When the element is a polygonal hole, we first triangulate its interior.

After the insertion or deletion of an element, a process of improvement
is called that expands the quality through the mesh. We could follow two
approaches: to apply our improvement process each time a part of the element
is inserted or deleted, or apply the process right after the whole element is
inserted or deleted. This situation has been illustrated with the insertion of a
segment in Figure 9 (first approach) and in Figure 10 (second approach). As
can be observed in the figures, the use of the improvement process after each
point insertion increases the number of Steiner points. Consequently, in our
algorithms we will follow the second approach.

(a) (b)

(c) (d)

Fig. 9. (a) Initial mesh of a PSLG formed by a square boundary. (b) The mesh after
the insertion of two points. (c) The resulting mesh with skinny triangles generated
by the insertion of a segment whose endpoints are the points previously added. (d)
Resulting mesh obtained applying a improvement process after each partial element
addition.

52 N. Coll et al.

(a) (b) (c)

Fig. 10. (a) Initial mesh of a PSLG formed by a square boundary. (b) The resulting
mesh with skinny triangles generated by the insertion of a segment. (c) Resulting
mesh delaying improvement process at the end.

5.1 Improvement Process

The improvement process receives as input two lists: the list of points to be
inserted, initially containing only midpoints of encroached subsegments, and
the list of skinny triangles to be removed, originated by the modification of
an element. The output of the process is a mesh with the desired quality. The
process maintains the two lists and finishes when both are empty. Priority
is established on midpoints. To remove a skinny triangle, we first check its
Steiner vertices for deletion, then we check its Steiner vertices for movement,
and finally we add circumcenters to the list of points. This order of treatment
of skinny triangles is important to obtain a reduction in the number of vertices.
Following the rule from Ruppert’s algorithm encroached circumcenters are not
inserted and the midpoint of the encroached subsegments are added to the
list of points to be inserted.

6 Generating a Delaunay Refined Mesh

As stated in the introduction, our improvement process can also be applied to
generate a refined Delaunay quality mesh of a PSLG. The complete process
consists of the following steps. First, a conforming Delaunay triangulation
of the PSLG is generated, then the list of skinny triangles to be removed is
obtained, and finally our improvement method is applied to eliminate those
skinny triangles. Observe that initially the list of points to be inserted is
empty.

7 Experimental Results

We have implemented our algorithms in C++ language and using OpenGL
libraries to build an interactive interface. Our application takes a triangulated

Mesh Modification Under Local Domain Changes 53

PSLG as input. This initial mesh is refined until the desired quality is achieved.
Also, the mesh can be modified by adding or deleting elements while keeping
the quality established.

We have run several simulations in order to test our implementation and
we have compared these simulations with meshes generated using TRIAN-
GLE, a freely available software produced by Jonathan R. Shewchuck [13]
(http://www.cs.cmu.edu/�quake/triangle.html), and an incremental Ruppert
algorithm based on the work of Miller et al. [10]. In table 1 we present the
statistics and the reference to the correspondent set of outputs. The input
PSLG is composed of a square boundary and a polygonal hole described by
20 points. The final PSLG consists of the initial PSLG plus four polygonal
holes each one of them composed of 10 points. In incremental Ruppert and in
our approach these last four holes are added to the mesh one at a time. Tests
have been carried out varying the quality requirement. The first column of
table 1 shows the quality measures considered. The following columns show
the number of triangles of the initial mesh and those generated by TRIAN-
GLE, the incremental Ruppert algorithm, finishing with our algorithm. It can
be observed in the results obtained that the number of triangles generated by
the incremental Ruppert, or from the scratch are higher than applying our
algorithm. Also notice that the percentage of the increment increases as the
quality angle gets higher.

Table 1. Number of triangles obtained after the insertion of four holes.

α Initial mesh From scratch Incremental Ruppert Our approach Figure

20◦ 124 439 421 314 11
25◦ 170 514 547 413 12
30◦ 257 717 1275 565 13
32◦ 350 1745 2771 674 14

(a) From scratch. (b) Incremental Ruppert. (c) Our approach.

Fig. 11. Results obtained for an angle α = 20◦.

54 N. Coll et al.

(a) From scratch. (b) Incremental Ruppert. (c) Our approach.

Fig. 12. Results obtained for an angle α = 25◦.

(a) From scratch. (b) Incremental Ruppert. (c) Our approach.

Fig. 13. Results obtained for an angle α = 30◦.

(a) From scratch. (b) Incremental Ruppert. (c) Our approach.

Fig. 14. Results obtained for an angle α = 32◦.

Mesh Modification Under Local Domain Changes 55

All previous examples deal with the addition of elements to the initial
PSLG, but our algorithm allows us to delete elements from the PSLG. Figure
15 shows an example of segment deletion. Notice that the mesh obtained after
the segment deletion is quite similar to the initial mesh.

(a) (b) (c)

Fig. 15. (a) Initial mesh. (b) A mesh with a segment to be deleted. (c) Resulting
mesh after the segment deletion.

Finally, we present some initial results obtained when we use our improve-
ment method for Delaunay refined mesh generation. The PSLG used mod-
els the Lake Superior. Figure 16(a) shows the mesh generated taking 34◦ as
quality angle by TRIANGLE, and Figure 16(b) the result after applying our
method.

(a) Mesh produced by TRIANGLE. (b) Mesh produced by our approach.

Fig. 16. Results obtained for an angle α = 34◦.

8 Future Work

Future work includes an exhaustive analysis of the conditions in which the
algorithm terminates.

A large experimentation with other input PSLGs is necessary to confirm
our initial results in Delaunay refined mesh generation.

56 N. Coll et al.

Our ultimate goal is to extend our framework towards the modification
and generation of three dimensional meshes.

Acknowledgments

The authors wish to thank Frederic Pérez for his help in preparing this paper,
and to the reviewers for their comments and suggestions.

References

1. N. Amenta, M. Bern and D. Epstein. Optimal point placement for mesh
smoothing. In SODA:ACM-SIAM Symposium on Discrete Algorithms, 1997.

2. A. Bowyer. Computing Dirichlet Tessellations. Computer Journal, 24:2:162–
166, 1981.

3. K. Clarkson and K. Mehlhorn and R. Seidel. Four results on randomized in-
cremental constructions. Computational Geometry: Theory and Applications,
3:185–212, 1993.

4. O. Devillers. On deletion in Delaunay triangulation. 15th Annual ACM Sym-
posium on Computational Geometry, 181–188, 1999.

5. L. Freitag and M. Jones and P. Plassmann. An efficient parallel algorithm for
mesh smoothing. In Proceedings of the Fourth International Meshing Round-
table, 47–58, 1995.

6. N. Han-Wen and A.-F. van der Stappen. A Delaunay approach to interactive
cutting in triangulated surfaces. In J.D. Boissonnat, J. Burdick, K. Goldbrg &
S. Hutchinson (Eds.), Algorithmic Foundations of Robotics V, Springer-Verlag,
113-129 , 2004.

7. S. Har-Peled and A. Üngör. A Time-Optimal Delaunay Refinement Algorithm
in Two Dimensions. 21st Annual ACM Symposium on Computational Geometry
(SoCG), 228–229, 2005.

8. M. Kallmann and H. Bieri and D. Thalmann. Fully Dynamic Constrained
Delaunay Triangulation. Geometric Modelling For Scientific Visualization -
Spring-Verlag, 2003.

9. C.-L. Lawson. Software for C1 Surface Interpolation. Mathematical Software
III(John R.Rice, editor), 161–194, 1977.

10. G.-L. Miller and S.-E. Pav and N.-J. Walkington. Fully incremental 3d
Delaunay mesh generation. In Proceedings 11th International Meshing

11. S.-E. Pav. Delaunay Refinement Algorithms. Department of Mathematical
Sciences - Carnegie Mellon University - PhD thesis, 2003.

12. J. Ruppert. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation. Journal of Algorithms, 18:3:548–585, 1995.

13. J.-R. Shewchuk. Delaunay Refinement Mesh Generation. School of Computer
Science - Carnegie Mellon University - PhD thesis, 1997.

14. D.-F. Watson. Computing the n-dimensional Delaunay Tessellation with Ap-
plication to Voronoi Polytopes. Computer Journal, 24:2:167–172, 1981.

Roundtable, 75–86, 2002.

