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Summary. A hierarchical simplicial mesh is a recursive decomposition of space into
cells that are simplices. Such a mesh is compatible if pairs of neighboring cells meet
along a single common face. Compatibility condition is important in many applica-
tions where the mesh serves as a discretization of a function. Enforcing compatibility
involves refining the simplices of the mesh further, thus generates a larger mesh. We
show that the size of a simplicial mesh grows by no more than a constant factor
when compatibly refined. We prove a tight upper bound on the expansion factor for
2-dimensional meshes, and we sketch upper bounds for d-dimensional meshes.

1 Introduction

Hierarchical data structures based on repeated subdivision of space have been
widely used in application areas such as finite element analysis, computer
graphics, scientific visualization, geometric modeling, image processing and
geographic information systems. In many such applications, the spatial de-
composition serves as a discretization of the domain of a scalar or vector field,
which associates each point of real d-dimensional space with a scalar or vector
value, respectively. The field values are sampled at the vertices of the subdi-
vision, and for any other query point the field value could be computed by an
appropriate (often linear) interpolation of the field values at the vertices of
the cell that contains it. The subdivision is adaptively refined to improve the
approximation of the field at regions of high variation.

Our interest in this paper is on simplicial decompositions, particularly on
regular hierarchical simplicial meshes [10, 2]. This is a generalization of the
concept of hierarchical regular triangulation in the plane. Each element of such
a mesh is a d-simplex, that is, the convex hull of d + 1 affinely independent
points [4]. A simplicial mesh is said to be regular if the vertices of the mesh are
regularly distributed and the process by which a cell is subdivided is identical
for all cells. The regular simplicial mesh that we consider is generated by a
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process of repeated bisection applied to a hypercube that has been initially
subdivided into d! congruent simplices. The subdivision pattern repeats itself
on a smaller scale at every d levels.

A simplicial mesh is called compatible if pairs of neighboring cells meet
along a single common face. A compatible simplicial mesh is also referred to
as a simplicial complex. (See Fig. 1 for a 2-dimensional example.) The com-
patibility condition is important since otherwise cracks may occur along the
faces of the subdivision, which in turn causes discontinuities in the function
and presents problems when using the mesh for interpolation. A compatible
mesh ensures at least C0 continuity and is desirable for many applications.
2-dimensional simplicial meshes have been used for multi-resolution terrain
modeling and rendering [5, 9, 3, 12, 6]; 3-dimensional meshes for volume ren-
dering of 3-dimensional scalar fields (such as medical datasets) [7, 14], and
4-dimensional meshes for visualization of time-varying flow fields.

(a) (b)

crack

Fig. 1. (a) A crack (b) Compatible simplicial mesh in the plane

Refining a simplicial mesh to enforce compatibility requires refining ad-
ditional simplices if they share split faces with their neighbors. The cost of
compatible refinement is that a larger mesh will be generated. Our goal in this
paper is to show that when a simplicial mesh is refined to enforce compati-
bility, its size will grow by no more than a constant factor. We prove a tight
upper bound on the expansion factor for 2-dimensional meshes, and upper
bounds for d-dimensional meshes.

Previously, Weiser [13] and Moore [11] proved results on the cost of re-
stricting quadtrees. A restricted quadtree is a quadtree in which two neighbor-
ing leaf cells in the quadtree may differ at most by one level [8]. Moore calls
a restricted quadtree as a 1-balanced quadtree. Weiser showed that a square
quadtree grows no more than nine times bigger and a triangular quadtree
grows no more than thirteen times bigger when refined to provide 1-balance
[13]. Moore later showed Weiser’s bounds could be reduced by showing that
a square quadtree grows at most eight times larger, and triangular quadtrees
grow ten times larger when refined for 1-balance [11]. Moore also showed that
his bounds are tight.

We follow Moore’s methodology to show similar results for the family of
bisection-based regular hierarchical simplicial meshes. Note that, Moore’s tri-
angular quadtrees are constructed by repeatedly subdividing a triangle into
four smaller triangles which are similar to the original triangle. Moore also
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analyzes degree-three triangular “quadtrees” where each triangle is subdi-
vided into nine smaller similar triangles. In any case, all the triangles in the
entire triangular quadtree are similar triangles. The simplicial meshes that we
consider in this paper arises from a different family of meshes, which are con-
structed by repeatedly subdividing a simplex into two child simplices which
are congruent to each other but not similar to their parent. Thus, the sub-
division rule is different from a triangular quadtree and there is more than
one similarity class of simplices in the mesh. This bisection-based subdivision
rule can be applied in any dimension d. In addition, Moore’s analysis is based
on 1-balancing, whereas we are interested in compatibility refinement which
imposes a tighter requirement.

The remainder of the paper is organized as follows. In Section 2 we present
basic definitions and describe regular hierarchical simplicial meshes. In Sec-
tion 3 we prove an upper bound on the size of a 2-dimensional compatibly
refined simplicial mesh. In Section 4, we prove that this upper bound is as-
ymptotically tight. In Section 5, we sketch an upper bound for d-dimensional
meshes.

2 Preliminaries

The simplex decomposition tree (sd-tree for short) is a collection of binary
trees representing a regular hierarchical simplicial mesh in real d-dimensional
space. Assume that the domain of interest has been scaled to lie within a unit
reference hypercube. The reference hypercube is initially subdivided into d!
congruent simplices that share the major diagonal. It is well known that the
collection of these simplices fully subdivide the hypercube, and further that
this subdivision is compatible [1]. These d! simplices form the starting point
of our simplicial decomposition. Simplices are then refined by a process of
repeated subdivision, called bisection, in which a simplex is bisected by split-
ting one of its edges at its midpoint. The edge to be bisected is determined by
a specific vertex ordering [10, 2]. Intuitively, this bisection scheme alternates
bisecting the major diagonal of the hypercube first, then the diagonals of the
d−1 faces, then the diagonals of the d−2 faces, and so on, finally bisecting the
edges (1-faces) of the hypercube. (In the 2-dimensional and the 3-dimensional
case, this bisection scheme is equivalent to bisecting the longest edge of the
simplex.) Hence, each of the d! coarse simplices at the highest level is the
root of a separate binary tree, which are conceptually joined under a common
super-root corresponding to the hypercube. See Fig. 2 for a 2-dimensional
subdivision and the corresponding sd-tree.

Define the level, �, of a simplex to be the depth modulo the dimension,
that is, � = (p mod d), where p denotes the depth of a simplex in the tree.
The depth of a root simplex is zero, and of any other simplex is one more
than the depth of its parent.
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(a) (b)

Fig. 2. (a) 2-dimensional simplicial subdivision (b) The corresponding sd-tree

(a) (b)

Fig. 3. (a) level-0 simplex
(b) level-1 simplex

Maubach [10] showed that with every d con-
secutive bisections, the resulting simplices are
similar copies of their d-fold grandparent, sub-
ject to a uniform scaling by 1/2. Thus, the pat-
tern of decomposition repeats every d levels in
the decomposition. Since the two children of any
simplex are also congruent, it follows that all the
simplices at any given level of the decomposition
tree are congruent to each other. Thus, all the
similarity classes can be represented by d canonical simplices, one per level.
In Fig. 3(a) and (b) the shaded simplices denote the two canonical simplices
for a 2-dimensional subdivision. Notice, for example, that any simplex in the
subdivision shown in Fig. 1 is congruent to either one of the two canonical
simplices. Consequently, it suffices to consider only the canonical simplices
when analyzing the structure of the tree.

(a) (b)

Fig. 4. (a) Before and (b) after
compatible refinement

A d-dimensional simplex decomposition
tree is said to be compatible, if each simplex
in the subdivision shares a (d− 1)-face with
exactly one neighbor simplex. If the subdivi-
sion is not compatible, we can further refine
simplices to provide compatibility. Consider
the non-compatible subdivision in Fig. 4(a).
The simplices that share a bisected edge
with already bisected simplices need to be
bisected as well. However, note that new bi-
sections will possibly trigger more bisections
at the higher levels of the tree. In Fig. 4(b)
the dashed edges illustrate the bisections triggered due to compatibility re-
finement of the subdivision shown in (a).
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3 Upper Bound for 2-Dimensional Decompositions

In this section, we prove that the size of a 2-dimensional regular hierarchical
simplicial mesh grows only by a constant factor when compatibly refined.

Theorem 1. A non-compatible simplex decomposition tree in 2-dimensional
space with n nodes can be compatibly refined to form a simplex decomposition
tree with no more than 14n nodes.

S

(b)(a)

S

Fig. 5. (a) Barrier of a level-0 simplex (b) Barrier of a level-1 simplex

We follow a similar method as Moore [11] to prove this theorem. We start
by finding a barrier, that is, a configuration of simplices around a particular
simplex S. Then, we show that if such a barrier is produced after a series of
splits (possibly none), then simplex S will never split during compatibility
refinement. Recall that, in the 2-dimensional case, we have two canonical
simplices which are shown in Fig. 3(a) and (b). We call them level-0 simplices
and level-1 simplices, respectively. The barriers for each class of simplices are
illustrated in Fig. 5(a) and (b). Before proving the above theorem, we first
introduce the notion of a safe simplex and prove a lemma that shows that
such simplices cannot be split.

Definition 1. (Safe Simplex) A simplex S is safe if none of the barrier ele-
ments are split initially or such a barrier comes into existence after any series
of splits.

Lemma 1. A safe simplex S will never split during compatibility refinement.

Proof. (of Lemma 1)
We will prove the lemma by induction on the depth of the simplex in the

simplex decomposition tree. Let p denote the depth of the simplex S.

If S is the deepest leaf, S will not split since a simplex will only split if it has
a split neighbor.

Basis
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Assume that our inductive hypothesis holds for simplices at depth p + 1. We
will show that the inductive hypothesis holds for a simplex S at depth p. We
need to consider the two canonical simplices separately.

Let us first consider the case where S is a level-0 simplex, that is, p mod
2 = 0. Note that for S to split, either one of the three neighboring simplices
shown in Fig. 6(a) should split. If none of the three neighbor simplices labeled
0, 1 and 2 split, S will never split. Suppose that S is initially surrounded by
the barrier shown in Fig. 6(b), such that no barrier element is split. Even if all
the boundary barrier elements that are at depth p split due to compatibility
refinement, we will have the structure depicted in Fig. 6(c). Notice that the
neighbors labeled 0 and 2 are at depth p+1, and they have their own barriers.
Thus, these neighbors are safe. The barrier for neighbor 0 is depicted with
thick lines in Fig. 6(d), and the barrier for neighbor 2 is symmetric to that.
Therefore, by the inductive hypothesis that was assumed to hold for simplices
at depth p + 1, neighbors 0 and 2 need not split.

S
0

2

1

1

2

0 S

3

4

(c)

S

(b)(a)

element splits
1 level of boundary

1

2

0 S

3

4

(d)

Fig. 6. Induction step for a level-0 simplex

Similarly simplices labeled 3 and 4 at depth p + 1 are surrounded by a
barrier and they will not split. If 3 and 4 do not split, neighbor simplex 1 will

Induction Step
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not split. Thus, none of the neighbor simplices of S will split ensuring that S
will not split. This concludes the case of a level-0 simplex.

The case of S being a level-1 simplex can be proved similarly. Suppose
that S is initially surrounded by the barrier shown in Fig. 7(a), such that no
barrier element is split. Even if all the boundary barrier elements that are
at depth p split due to compatibility refinement, we will have the structure
depicted in Fig. 7(b). Notice that if none of the three neighbor simplices of S
which are labeled 0, 1 and 2 split, S will never split. Neighbors 1 and 2 which
are at depth p+1 have their own barriers, and so, they are safe. The barrier for
neighbor 1 is depicted with thick lines in Fig. 7(c). The barrier for neighbor 2
is symmetric. Therefore, neighbors 1 and 2 need not split. Similarly, simplices
labeled 3 and 4 are at depth p + 1 and have their own barriers, preventing
neighbor 0 to split. Since none of the neighbor simplices of S split, S will not
split. ��

boundary
element
splits

3

0

4 2

1 3

0

4 2

(b) (c)(a)

1

S S S

Fig. 7. Induction step for a level-1 simplex

Proof. (of Theorem 1)
Using Lemma 1, if a simplex S splits, it must not be safe, that is, one or

more of its barrier elements is initially split. We will hold one of its barrier
elements responsible for splitting of S. A split element R may be responsible
for splitting 13 other split elements, since it may be in the barrier of 13 possible
elements as depicted in Fig. 8 when R is a level-0 simplex, and in Fig. 9 when
R is a level-1 simplex. In Fig. 8, part (a) shows the nine possible level-0
simplices whose barriers contains R, and part (b) shows the four possible
level-1 simplices whose barriers may contain R. Thus, compatibly refining a
simplex decomposition tree could increase the number of nodes by at most a
factor of 14. ��

4 Tightness of the Upper Bound

In this section, we demonstrate that the upper bound of Theorem 1 is as-
ymptotically tight by constructing an infinite family of simplex decomposition
trees, each of which grow fourteen times larger less an additive constant, when
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Fig. 8. 13 simplices whose barriers contain level-0 simplex R
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Fig. 9. 13 simplices whose barriers contain level-1 simplex R

compatibly refined. Let Ti denote the i-th tree in this family of trees. Ti is
constructed as follows. We start with the tree shown in Fig. 10(a). Initially,
we designate the simplex with thick borders as the next simplex to split. Each
split generates two new child simplices. After the split we update next to be
the child simplex which has the central vertex of the subdivision as one of
its vertices. To construct Ti, we split the next simplex 2i times. Figure 10(b)
shows such a subdivision after six splits (i = 3). To complete the construction
of Ti, we replace the next simplex with the subdivision shown in Fig. 10(c).

Figure 11 and Fig. 12 show the first three trees of this family. Figure 11(a)
and (b) show T1 before and after compatible refinement, respectively. Splits
performed during compatible refinement are depicted with dashed lines. T1 has
19 internal nodes before refinement, and 97 internal nodes after refinement.
Fig. 11(c) shows T1 and T2 such that T1 is within the gray inner square
with thick borders. T2 is defined within the outer square. The thicker dashed
lines correspond to the additional splits (i.e., internal nodes generated) due
to compatible refinement of T2.
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(c)(a) (b)

Fig. 10. Construction of Ti

1 (b) T1

(c) T1

after refinement

after refinement

Fig. 11. T1 within the inner gray square and T2 within the outer square

(a) T
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Figure 12 shows T1, T2 and T3 such that T1 is within the innermost light
gray square, T2 is within the dark gray next outer square and T3 is defined
within the outermost square.

before        after refinement
number of internal nodes 

T1 within light gray square

T2 within dark gray square

T3 within outermost square

19

21

97

23 153

125

Fig. 12. T3

From these first three trees of the sequence we observe a pattern that, Ti+1

contains two more internal nodes than Ti, and the compatible refinement of
Ti+1 produces twenty six more internal nodes than the compatible refinement
of Ti. See Fig. 13 for a depiction of how Ti+1 is related to Ti. In this figure, the
thick solid lines represent the two additional splits in Ti+1 compared to Ti,
and the thick dashed lines (seven of them are on the border of Ti) constitute
the twenty six additional splits needed for the compatible refinement of Ti+1

than were necessary for the compatible refinement of Ti. (The thin solid lines
were already accounted for in previous trees of the sequence.) The number of
internal nodes before and after the compatible refinement for the first three
trees of the family is also given in Fig. 12.

Based on above observations, any tree of this family with n nodes generates
a tree with 14n− 169 nodes after compatible refinement. As n increases, the
expansion factor approaches the upper bound of 14.

5 The Expansion Factor in Higher Dimensions

Unlike the 2-dimensional case, we do not have tight bounds on the expansion
factor for dimensions 3 and higher. However, we will sketch an upper bound
on their size after compatible refinement. In our results for 2-dimensional
trees described in previous sections, we have chosen the minimum barrier for
a simplex in order to prove a tight upper bound. Our approach will be to
generate a larger barrier, but one that is easier to analyze. Such a barrier for
a level-0 simplex in the 2-dimensional case is shown in Fig. 14. This barrier
contains 18 simplices all of the same depth. (All of them are level-0 simplices.)
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Ti

Ti+1

Fig. 13. Ti and Ti+1

Consequently, a level-0 simplex could be in the barriers of 17 other simplices,
meaning that if it were split, it could be responsible for 17 other element
splits. Thus, compatibly refining a 2-dimensional simplex decomposition tree
could increase the number of nodes by at most a factor of 18.

S

Fig. 14. A naive bar-
rier for a level-0 sim-
plex in 2-dimensions

If we analyze the construction of the barrier, we note
that the square containing S in Fig. 14 is surrounded
by 8 squares and each square contains 2 level-0 sim-
plices. We can generalize such a barrier to d-dimensional
case as follows. Consider a level-0 simplex S within
a d-dimensional hypercube H. Surround H by 3d − 1
hypercubes such that each face of H is shared by a
neighbor hypercube. Each of these neighbor hypercubes
contains d! simplices. This results in a barrier contain-
ing 3dd! level-0 simplices including S. Consequently, a
level-0 simplex could be in the barriers of (3dd!)−1 sim-
plices, therefore, if it is split, it could be responsible for
(3dd!) − 1 other element splits. Thus, a d-dimensional
simplex decomposition tree could grow by at most a
factor of 3dd! when compatibly refined.

However, above analysis is only for level-0 simplices. In the d-dimensional
case, we have d canonical simplices to be considered. We can construct the
barrier for a level-k simplex S as follows. S is contained in a d-dimensional
hypercube H. Surround H by 3d − 1 hypercubes as before, but consider that
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each hypercube is subdivided into d! ·2k level-k simplices instead. This results
in a barrier containing 3dd! · 2k level-k simplices including S. Consequently, a
level-k simplex could be in the barriers of 3dd! ·2k−1 simplices. Since k could
be d− 1 at most, an d-dimensional simplex decomposition tree could grow by
at most a factor of 3dd! · 2d−1 when compatibly refined.

6 Conclusion

We have shown that when compatibly refined the size of a 2-dimensional
simplex decomposition tree grows at most by a factor of 14 and this is tight.
This is a worst-case bound, however, and our preliminary experiments on
randomly generated sd-trees suggest that, in practice the expansion factor
is much smaller. For example, over a 100 randomly generated 2-dimensional
sd-trees of maximum height 32, the average expansion factor was found to
be only 4.7, and the maximum expansion factor was found to be 5.9. For
3-dimensional sd-trees of maximum height 32, the average was 31.2 and the
maximum was 36.1. For 4-dimensional sd-trees of maximum height 32, the
average was 227.6 and the maximum was 244.6.

For dimensions higher than 2, we have sketched an upper bound, but a
more complete analysis would be needed to prove tight bounds. Since a d-
dimensional sd-tree contains simplices from d different similarity classes, and
for a complete analysis each canonical simplex has to be considered separately,
it would therefore be much more challenging to prove tight upper bounds for
general dimensions.
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