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Summary. This paper describes an approach to smooth the surface and improve
the quality of quadrilateral/hexahedral meshes with feature preserved using geo-
metric flow. For quadrilateral surface meshes, the surface diffusion flow is selected
to remove noise by relocating vertices in the normal direction, and the aspect ratio
is improved with feature preserved by adjusting vertex positions in the tangent di-
rection. For hexahedral meshes, besides the surface vertex movement in the normal
and tangent directions, interior vertices are relocated to improve the aspect ratio.
Our method has the properties of noise removal, feature preservation and quality
improvement of quadrilateral/hexahedral meshes, and it is especially suitable for
biomolecular meshes because the surface diffusion flow preserves sphere accurately
if the initial surface is close to a sphere. Several demonstration examples are pro-
vided from a wide variety of application domains. Some extracted meshes have been
extensively used in finite element simulations.

Key words: quadrilateral/hexahedral mesh, surface smoothing, feature preserva-
tion, quality improvement, geometric flow.

1 Introduction

The quality of unstructured quadrilateral/hexahedral meshes plays an impor-
tant role in finite element simulations. Although a lot of efforts have been made, it
still remains a challenging problem to generate quality quad/hex meshes for com-
plicated structures such as the biomolecule Ribosome 30S shown in Figure 1. We
have described an isosurface extraction method to generate quad/hex meshes for

*http://www.ices.utexas.edu/~jessica/paper/quadhexgf
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arbitrary complicated structures from volumetric data and utilized an optimization-
based method to improve the mesh quality [ZBS04] [ZB04] [ZB05], but the surface
needs to be smoothed and the mesh quality needs to be further improved.

Geometric partial differential equations (GPDESs) such as Laplacian smoothing
have been extensively used in surface smoothing and mesh quality improvement.
There are two main methods in solving GPDEs, the finite element method (FEM)
and the finite difference method (FDM). Although FDM is not robust sometimes,
people still prefer to choosing FDM instead of FEM because FDM is simpler and
easier to implement. Recently, a discretized format of the Laplacian-Beltrami (LB)
operator over triangular meshes was derived and used in solving GPDEs [MDSB02]
[XPBO05] [Xu04]. In this paper, we will discretize the LB operator over quadrilat-
eral meshes, and discuss an approach to apply the discretizated format on surface
smoothing and quality improvement for quadrilateral or hexahedral meshes.

The main steps to smooth the surface and improve the quality of quadrilateral
and hexahedral meshes are as follows:

1. Discretizing the LB operator and denoising the surface mesh - vertex adjustment
in the normal direction with volume preservation.

2. Improving the aspect ratio of the surface mesh - vertex adjustment in the tangent
direction with feature preservation.

3. Improving the aspect ratio of the volumetric mesh - vertex adjustment inside
the volume.

For quadrilateral meshes, generally only Step 1 and Step 2 are required, but all
the three steps are necessary for surface smoothing and quality improvement of
hexahedral meshes.

Unavoidly the quadrilateral or hexahedral meshes may have some noise over
the surface, therefore the surface mesh needs to be smoothed. In this paper, we
derive a discretized format of the LB operator, and choose the surface diffusion
flow (Equation (1)) to smooth the surface mesh by relocating vertices along their
normal directions. The surface diffusion flow is volume preserving and also preserves
a sphere accurately if the initial surface mesh is embedded and close to a sphere,
therefore it is especially suitable for surface smoothing of biomolecular meshes since
biomolecules are usually modelled as a union of hard spheres.

The aspect ratio of the surface mesh can be improved by adjusting vertices in
the tangent plane, and surface features are preserved since the movement in the
tangent plane doesn’t change the surface shape ([Sap01], page 72). For each vertex,
the mass center is calculated to find its new position on the tangent plane. Since the
vertex tangent movement is an area-weighted relaxation method, it is also suitable
for adaptive quadrilateral meshes.

Besides the movement of surface vertices, interior vertices also need to be relo-
cated in order to improve the aspect ratio of hexahedral meshes. The mass center is
calculated as the new position for each interior vertex.

Although our relaxation-based method can not guarantee that no inverted ele-
ment is introduced for arbitrary input meshes, it works well in most cases with the
properties of noise removal, feature preservation, mesh quality improvement. Fur-
thermore, it is especially suitable for surface smoothing and quality improvement
of biomolecular meshes. As the ‘smart’ Laplacian smoothing [CTS98] [Fre97], this
method is applied only when the mesh quality is improved in order to avoid inverted
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Fig. 1. The comparison of mesh quality of Thermus Thermophilus small Ribosome
30S (1J5E) crystal subunit. The pink color shows 16S rRNA and the remaining colors
are proteins. (a) the original quadrilateral mesh (13705 vertices, 13762 quads); (b)
the improved quadrilateral mesh; (c) the improved hexahedral mesh (40294 vertices,
33313 hexes); (d) the zoom-in picture of the red box in (a); (e) the zoom-in picture
of the red box in (b). The mesh quality is measured by three quality metrics as
shown in Figure 2.

elements. This method can also be combined with the optimization-based method
to obtain a high quality mesh with relatively less computational cost.

The remainder of this paper is organized as follows: Section 2 reviews the pre-
vious related work; Sections 3 discusses the detailed algorithm of the LB operator
discretization, surface smoothing and quality improvement of quadrilateral meshes;
Sections 4 explains the quality improvement of hexahedral meshes; Section 5 shows
some results and applications; The final section presents our conclusion.

2 Previous Work

It is well-known that poor quality meshes result in poorly conditioned stiffness
matrices in finite element analysis, and affect the stability, convergence, and accuracy
of finite element solvers. Therefore, quality improvement is an important step in
mesh generation.

Some quality improvement techniques of triangular and tetrahedral meshes, such
as the edge-contraction method, can not be used for quadrilateral and hexahedral
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meshes because we do not want to introduce any degenerated elements. Therefore,
the mesh smoothing methods are selected to improve the quality of quad/hex meshes
by adjusting the vertex positions in the mesh while preserving its connectivity. As
reviewed in [Owe98] [TWO00], Laplacian smoothing and optimization are the two
main quality improvement techniques.

As the simplest and most straight forward method for node-based mesh smooth-
ing, Laplacian smoothing relocates the vertex position at the average of the nodes
connecting to it [Fie88]. There are a variety of smoothing techniques based on a
weighted average of the surrounding nodes and elements [GB98] [ZS00] [SV03]. The
averaging method may invert or degrade the local quality, but it is computationally
inexpensive and very easy to implement, so it is in wide use. Winslow smoothing is
more resistant to mesh folding because it requires the logical variables are harmonic
functions [Knu99].

Instead of relocating vertices based on a heuristic algorithm, people utilized an
optimization technique to improve mesh quality. The optimization algorithm mea-
sures the quality of the surrounding elements to a node and attempts to optimize
it [FP00]. The algorithm is similar to a minimax technique used to solve circuit
design problems [CC78]. Optimization-based smoothing yields better results but it
is more expensive than Laplacian smoothing, and it is difficult to decide the op-
timized iteration step length. Therefore, a combined Laplacian/optimization-based
approach [CTS98] [Fre97] [FOGI7] was recommended. Physically-based simulations
are used to reposition nodes [LMZ86]. Anisotropic meshes are obtained from bubble
equilibrium [SYI97] [BH96].

When we use the smoothing method to improve the mesh quality, it is also
important to preserve surface features. Baker [Bak04] presented a feature extrac-
tion scheme which is based on estimates of the local normals and principal curva-
tures at each mesh node. Local parametrization was utilized to improve the surface
mesh quality while preserving surface characteristics [GSK02], and two techniques
called trapezium drawing and curvature-based mesh improvement were discussed in
[SSHO4].

Staten et al. [SC97] [Kin97] proposed algorithms to improve node valence for
quadrilateral meshes. One special case of cleanup in hexahedral meshes for the
whisker weaving algorithm is presented in [MT95]. Schneiders [Sch96] proposed al-
gorithms and a series of templates for quad/hex element decomposition. A recursive
subdivision algorithm was proposed for the refinement of hex meshes [BWX02].

3 Quadrilateral Mesh

Noise may exist in quadrilateral meshes, therefore we need to smooth the surface
mesh. The quality of some quadrilateral meshes may not be good enough for finite
element calculations, and the aspect ratio also needs to be improved.

There are two steps for the surface smoothing and the quality improvement of
quadrilateral meshes: (1) the discretization of Laplace-Beltrami opertor and the ver-
tex movement along its normal direction to remove noise, (2) the vertex movement
on its tangent plane to improve the aspect ratio while preserving surface features.
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3.1 Geometric Flow

Various geometric partial differential equations (GPDESs), such as the mean cur-
vature flow, the surface diffusion flow and Willmore flow, have been extensively used
in surface and imaging processing [XPB05]. Here we choose the surface diffusion flow
to smooth the surface mesh,

9z = AH(z)n(z). (1)
ot
where A is the Laplace-Beltrami (LB) operator, H is the mean curvature and n(z)
is the unit normal vector at the node z. In [EMS98], the existence and uniqueness
of solutions for this flow was discussed, and the solution converges exponentially
fast to a sphere if the initial surface is embedded and close to a sphere. It was also
proved that this flow is area shrinking and volume preserving [XPB05].

In applying geometric flows on surface smoothing and quality improvement over
quadrilateral meshes, it is important to derive a discretized format of the LB op-
erator. Discretized schemes of the LB operator over triangular meshes have been
derived and utilized in solving GPDEs [MDSB02] [XPB05] [Xu04].

A quad can be subdivided into triangles, hence the discretization schemes of the
LB operator over triangular meshes could be easily used for quadrilateral meshes.
However, since the subdivision of each quad into triangles is not unique (there are
two ways), the resulting discretization scheme is therefore not unique. Additionally
in the discretization scheme, the element area needs to be calculated. If we choose to
split each quad into two triangles and calculate the area of a quad as the summation
of the area of two triangles, then the area calculated from the two different subdi-
visions could be very different because four vertices of a quad may not be coplanar.
Therefore, a unique discretized format of the LB operator directly over quad meshes
is required.

3.2 Discretized Laplace-Beltrami Operator

Here we will derive a discretized format for the LB operator over quadrilateral
meshes. The basic idea of our scheme is to use the bilinear interpolation to derive
the discretized format and to calculate the area of a quad. The discretization scheme
is thus uniquely defined.

P3 P4 1
P3 P4

z

TZ,y P1 P2
Pl P2
« 0 1 u

Fig. 2. A quad [p1p2paps] is mapped into a bilinear parametric surface.

Area Calculation: Let [p1p2paps] be a quad in R?, then we can define a bilinear
parametric surface S that interpolates four vertices of the quad as shown in Figure
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S(u,v) = (1 —u)(1 —v)p1 +u(l — v)p2
+ (1 — u)vps + uvpa. (2)

The tangents of the surface are

Su(u,v) = (1 =v)(p2 — p1) +v(pa — p3), (3)
Sy(u,v) = (1 —u)(ps — p1) + u(pa — p2). (4)

Let V denote the gradient operator about the (z,y, z) coordinates of the vertex P,
then we have

VSu(u,v) = —(1 —v), (5)
VSu(u,v) = —(1 — u). (6)

Let A denote the area of the surface S(u,v) for (u,v) € [0, 1], then we have

1 1
A= / / || Su xSy [[2dudv
0 0
11
— /0 /o \/” Su 12 So |2 =(Su, Sv)2dudv. )

It may not be easy to obtain the explicit form for integrals in calculating the area,
numerical integration quadrature could be used. Here we use the following four-point
Gaussian quadrature rule to compute the integral

/o1 /01 f(u,v)dudv ~ Mo = Je) Z Ho s f(q4)7 )

where

V3
+

_1 V3 +_
q—2 6’ q =

N | —

a=0G, ) @=(G", q)
. aa=(q", ¢").

The integration rule in Equation (8) is of O(h*), where h is the radius of the cir-
cumscribing circle.

Discretized LB Operator: The derivation of the discretized format of the LB
operator is based on a formula in differential geometry [MDSB02]:

VA
i — =H 9
diaml(l}%l)ﬂ() A (p)7 ( )
where A is the area of a region R over the surface around the surface point p,
diam(R) denotes the diameter of the region R, and H(p) is the mean curvature
normal.

From Equation (7), we have
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1,1
VA= / / VTS0 TPT80 T2 —(Su: )2 dud
// Sul(Su, (v = 1Sy — (u=1)8u)) ,
wu su n TS, 17 —(5..5,)2

)S _(U_l)sv)dudv
// \/II Su H | So [[? =(Su, Sv)?

= a21(p2 — p1) + qus(ps — p3)
+ as1(ps — p1) + qua(ps — p2),

(1—w) - 1)S, — (u— 1)Su))dudv
/ / \/|| Su ||2H So |12 =(Su, Sv)?

DSy — (u— l)Su))dudv
/ / \/ll Su || | So [[2 =(Su,Sv)?

s _/ / (A= w)(Su, (u=1)Su = (v =1S) ,
VIESu 2108y 12 =(Su, Sv)?

Su, (u—1)S, — (v —1)Sv)dudv
// VIESu 121080 112 =(Su, S)?

V A could be written as

where

VA = a1p1 + azp2 + asps + cupa
with

a1 = —@Q21 — (31, 2 = —Q21 — (Y42,

Q3 = —Q31 — (43, Q4 = —Q43 — (42.

455

(11)

(12)

Here we still use the four-point Gaussian quadrature rule in Equation (8) to compute
the integrals in the ayj;. It follows from Equation (12) that Z?:l a; = 0, we have

VA= a2(p2 —p1) + as(ps — p1) + cu(ps — p1).

P2j+1

P2j-1 P2j

Fig. 3. A neighboring quad [pip2j—1p2;p2;+1] around the vertex p;.

(13)
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Now let p; be a vertex with valence n, and p2; (1 < 7 < n) be one of its neighbors
on the quadrilateral mesh, then we can deﬁne three coefficients s, ag, aa as in (13).
Now we denote these coefficients as o, 3; and v; for the quad [pip2j—1p2jp2;+1] as
shown in Figure 3. By using Equation (13), the discrete mean curvature normal can
be defined as

H(pi) ~ A(:;)i) Z[Oé;'(ij—l — i)
+ B5(p2j+1 — pi) + Vj+1(p2; — pi)] (14)
= > wilpe — )

=

=1

where H(p;) denotes the mean curvature normal, A(p;) is the total area of the quads
around p;, and

Y5 i aj + B85 i aji1+ 55

Alp)’ "FTNT T Ay 0 T T A

% f—
w2j =

Using the relation Az = 2H (p;) ([Wil93], page 151), we obtain

Af(pi) = 2:Zjlwi(f(pk) — f(pi)- (15)
Therefore, 7
AH(pi)n(pi) ~ 2 Ii wi,(H(pr) — H(p:))n(p:)
=2 Z wi [n(pn(ps) "Hpe) — Hp.)| (16)

where H(py.) and H(p;) are further discretized by (14). Note that n(p;)n(px)” is a
3 X 3 matrix.

Figure 4 shows one example of the molecule consisting of three amino acids
(ASN, THR and TYR) with 49 atoms. The molecular surface was bumpy as shown
in Figure 4(a) since there are some noise existing in the input volumetric data, the
surface becomes smooth after the vertex normal movement as shown in Figure 4(b).

3.3 Tangent Movement

In order to improve the aspect ratio of the surface mesh, we need to add a
tangent movement in Equation (1), hence the flow becomes

oz
5 = AH(@)n(z) + v(z)T(), (17)

where v(z) is the velocity in the tangent direction T(x). First we calculate the mass
center m(x) for each vertex on the surface, then project the vector m(z)—z onto the
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Fig. 4. Surface smoothing and quality improvement of the molecule consisting of
three amino acids (ASN, THR and TYR) with 49 atoms (45534 vertices, 45538
quads). (a) and (c) - the original mesh; (b) and (d) - after surface smoothing and
quality improvement.

n(x) m(X)—x

(%) [mx)-x] 5(x)

[m(x)—x]-1(x) [m(x)—x] Ti(x)

Fig. 5. The tangent movement at the vertex z over a surface. The blue curve
represents a surface, and the red arrow is the resulting tangent movement vector.
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tangent plane. v(z)T(x) can be approximated by [m(z) —z] — n(z)” [m(x) — z]n(zx)
as shown in Figure 5.

Mass Center: A mass center p of a region S is defined by finding p € S, such
that

/S ly—p|? do = min. (18)

S is a piece of surface in R®, and S consists of quads around vertex x. Then we have

Z(pﬂrpzjﬂ +4p2j + P2j+1 —p)A; =0, (19)

Aj is the area of the quad [p;p2;—1p2jp2j+1] calculated from Equation (7) using the
integration rule in Equation (8). Then we can obtain

mipi) = Y (PRI P TP ) i, (20)
j=1

where A, , is the total of quad areas around p;. The area of a quad can be calculated

using Equation (7).

In Figure 4, the vertex tangent movement is used to improve the aspect ratio of
the quadrilateral mesh of the molecule consisting of three amino acids. Compared
with Figure 4(c), it is obvious that the quadrilateral mesh becomes more regular
and the aspect ratio is better as shown in Figure 4(d).

3.4 Temporal Discretization

nin ‘ihe temporal space, %
%, where At is the time step length. z}' is the approximating solution at
t = nAt, :v?“ is the approximating solution at t = (n 4 1)At, and ¥ serves as the
initial value at x;.
The spatial and temporal discretization leads to a linear system, and an ap-
proximating solution is obtained by solving it using a conjugate gradient iterative

method with diagonal preconditioning.

is approximated by a semi-implicit Euler scheme

3.5 Discussion

Vertex Normal Movement: The surface diffusion flow can preserve volume.
Furthermore, it also preserves a sphere accurately if the initial mesh in embedded
and close to a sphere. Suppose a molecular surface could be modelled by a union
of hard spheres, so it is desirable to use the surface diffusion flow to evolve the
molecular surface. Figure 4 shows one example, the molecular surface becomes more
smooth and features are preserved after surface denoising.

Vertex Tangent Movement: If the surface mesh has no noise, we can only
apply the tangent movement % = v(z)T(x) to improve the aspect ratio of the
mesh while ignoring the vertex normal movement. Our tangent movement has two

properties:
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(a)

Fig. 6. The quality of a quadrilateral mesh of a human head model is improved (2912
vertices, 2912 quads) after 100 iterations with the time step length 0.01. (a) The
original mesh; (b) Each vertex is relocated to its mass center, some facial features
are removed; (¢) Only tangent movement is applied.

e The tangent movement doesn’t change the surface shape ([Sap01], page 72).
Figure 6 shows the comparison of the human head model before and after the
quality improvement. In Figure 6(b), each vertex is relocated to its mass center,
so both normal movement and tangent movement are applied. After some iter-
ations, the facial features, such as the nose, eyes, mouth and ears, are removed.
In Figure 6(c), the vertex movement is restricted on the tangent plane, therefore
facial features are preserved.

e The tangent movement is an area-weighted averaging method, which is also
suitable for adaptive quad meshes as shown in Figure 7 and 8. In Figure 7, there
is a cavity in the structure of biomolecule mouse acetylcholinesterase (mAChE),
and denser meshes are generated around the cavity while coarser meshes are kept
in all other regions. In Figure 8, finer meshes are generated in the region of facial
features of the human head.

From Figure 6, 7 and 8, we can observe that after tangent movement, the quadri-
lateral meshes become more regular and the aspect ratio of the meshes is improved,
as well as surface features are preserved.

4 Hexahedral Mesh

There are three steps for surface smoothing and quality improvement of hex-
ahedral meshes, (1) surface vertex normal movement, (2) surface vertex tangent
movement and (3) interior vertex relocation.

4.1 Boundary Vertex Movement

The dual contouring hexahedral meshing method [ZBS04] [ZB04] [ZB05] provides
a boundary sign for each vertex and each face of a hexahedron, indicating if it lies
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(a)

Fig. 7. The quality of an adaptive quadrilateral mesh of a biomolecule mAChE
is improved (26720 vertices, 26752 quads). (a) the original mesh; (b) after quality
improvement.

()

Fig. 8. Adaptive quadrilateral/hexadedral meshes of the human head. (a) the orig-
inal quad mesh (1828 vertices, 1826 quads); (b) the improved quad mesh; (c) the
improved hex mesh (4129 vertices, 3201 hexes), the right part of elements are re-
moved to shown one cross section.

on the boundary surface or not. For example, a vertex or a face is on the surface if
its boundary sign is 1, while lies inside the volume if its boundary sign is 0.

The boundary sign for each vertex/face can also be decided by checking the
connectivity information of the input hexahedral mesh. If a face is shared by two
elements, then this face is not on the boundary; if a face belongs to only one hex,
then this face lies on the boundary surface, whose four vertices are also on the
boundary surface.

We can use the boundary sign to find the neighboring vertices/faces for a given
vertex. For each boundary vertex, we first find all its neighboring vertices and faces



Surface Smoothing and Quality Improvement of Quad/Hex Meshes 461

lying on the boundary surface by using the boundary sign, then relocate it to its
new position calculated from Equation (17). There is a special situation that we
need to be careful, a face/edge, whose four/two vertices are on the boundary, may
not be a boundary face.

4.2 Interior Vertex Movement

For each interior vertex, we intend to relocate it to the mass center of all its
surrounding hexahedra. There are different methods to calculate the volume for a
hexahedron. Some people divide a hex into five or six tetrahedra, then the volume of
the hex is the summation of the volume of these five or six tetrahedra. This method
is not unique since there are various dividing formats. Here we use an trilinear
parametric function to calculate the volume of a hex.

P7 P8
P> ! P6
ZI
wl .- P4
\'
Pl u P2

Fig. 9. The trilinear parametric volume V of a hexahedron [p1p2...ps].

Volume Calculation: Let [pip2...ps] be a hex in R?, then we define the tri-
linear parametric volume V (u,v,w) that interpolates eight vertices of the hex as
shown in Figure 9:

V(w,v,w) = (1 —u)(l—v)(1—w)p
+ u(l = v)(1 = wps + (1 — w)o(1 — w)ps

+ wo(l —w)ps + (1 —u)(1 - v)wps
+ u(1 — v)wps + (1 — wvwpr
+ uvwps. (21)

The tangents of the volume are

Vu(u,v,w) = (1 —v)(1 —w)(p2 — p1) + v(1 — w)(ps — p3)
+ (1 = v)w(ps — ps) + vw(ps — pr)
Vo(u,v,w) = (1 —u)(1 —w)(ps — p1) + u(l — w)(ps — p2)
+ (1 = ww(pr — ps) + uw(ps — ps),
Vi (u,v,w) = (L —u)(1 —v)(ps —p1) + u(l — v)(ps — p2)
+ (1 = wv(pr — ps) + uv(ps — pa).

Let V denote the volume of V (u,v,w) for (u,v,w) € [0,1]?, then we have
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v:/ol/ol/o1 VV dudvdw (22)

where
V= (Vux Vi) Va |? (23)

Numerical integration quadrature could be used. Here we choose the following
eight-point Gaussian quadrature rule to compute the integral

8 .
/1 /1 /1 f(u, v, w)dudvdw = Zj:18f(%), (24)
o Jo Jo

where
- _ 1 _ @ + 1 + @
q - 2 6 9 q - 2 6 )
q1 :(q77 q77 qi)a q2:(q+7 q77 qi)a
=@, qd,qa) awu=G", d, ),
=00, ¢, q) w=G" a, q),
+

ar="(", ¢, ¢, w=G" ¢ ).

The integration rule in Equation (24) is of O(h*), where h is the radius of the

circumscribing sphere.

Mass Center: A mass center p of a region V is defined by finding p € V, such
that

| o= do = min. (25)

V is a piece of volume in R, and V consists of hexahedra around vertex z. Then
we have

8

S G h v =0, (26)

=1

V; is the volume of the hex [pip2...ps] calculated from the trilinear function, then
we can obtain

8
mp) = Y (5 3 pVi)Vinar (27)

JEN(i) — J=1

where N (i) is the index set of the one ring neighbors of p;, and V;L,,, is the total of
hex volume around p;.

The same Euler scheme is used here for temporal discretization, and the linear
system is solved using the conjugate gradient iterative method.
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Type DataSet MeshSize Scaled Jacobian Condition Number Oddy Metric Inverted
(Vertexf, Elemf) (best,aver.,worst) (best,aver.,worst) (best,aver., worst) Elem#{

quad Head (2912, 2912) (1.0, 0.92, 0.02) (1.0, 1.13, 64.40) (0.0, 1.74, 8345.37) 0
Head?2 - (1.0, 0.93, 0.16) (1.0, 1.11, 6.33) (0.0, 0.63, 78.22) 0
Head3 - (1.0, 0.96, 0.47) (1.0, 1.05, 2.12) (0.0, 0.22, 6.96) 0
Ribosome 30ST (13705, 18762) (1.0, 0.90, 0.03) (1.0, 1.17, 36.90) (0.0, 1.38, 2721.19) 0
Ribosome 3082 - (1.0, 0.90, 0.03) (1.0, 1.17, 34.60) (0.0, 1.37, 2392.51) 0
Ribosome 3083 - (1.0, 0.93, 0.06) (1.0, 1.08, 16.14) (0.0, 0.38, 519.22) 0
hex Headl (8128, 6587) (1.0, 0.91, 1.7e-4) (1.0, 2.99, 6077.33) (0.0, 29.52, 1.80e5) 2
Head?2 - (1.0, 0.91, 0.005) (1.0, 1.96, 193.49) (0.0, 6.34, 5852.23) 0
Head? - (1.0, 0.92, 0.007) (1.0, 1.80, 147.80) (0.0, 4.50, 1481.69) 0
Ribosome 30S1 (40292, 33313) (1.0, 0.91, 2.4e-5) (1.0, 2.63, 4.26e4) (0.0, 34.15, 2.27¢6) 5
Ribosome 3082 - (1.0, 0.91, 0.004) (1.0, 1.74, 263.91) (0.0, 4.97, 8017.39) 0
Ribosome 3083 - (1.0, 0.92, 0.004) (1.0, 1.59, 237.36) (0.0, 3.42, 5133.25) 0

Fig. 10. The comparison of the three quality criteria (the scaled Jacobian, the con-
dition number and Oddy metric) before/after the quality improvement for quad/hex
meshes of the human head (Figure 12) and Ribosome 30S (Figure 1). DATA! — before
quality improvement; DATA? — after quality improvement using the optimization
scheme in [ZB04] [ZB05]; DATA® — after quality improvement using the combined
geometric flow/optimization-based approach.

Fig. 11. The comparison of mesh quality of Haloarcula Marismortui large Ribosome
50S (1JJ2) crystal subunit. The light yellow and the pink color show 5S and 23S
rRNA respectively, the remaining colors are proteins. (a) the original quad mesh
(17278 vertices, 17328 quads); (b) the improved quad mesh; (c) the improved hex
mesh (57144 vertices, 48405 hexes); (d) the zoom-in picture of the red box in (a);
(e) the zoom-in picture of the red box in (b).

5 Results and Applications

There are many different ways to define the aspect ratio for a quad or a
hex to measure the mesh quality. Here we choose the scaled Jacobian, the con-
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Fig. 12. The comparison of mesh quality of the interior and exterior hexahedral
meshes. (a) the original interior hex mesh (8128 vertices, 6587 hexes); (b) the im-
proved interior hex mesh; (c) the improved exterior hex mesh (16521 vertices, 13552
hexes). The mesh quality is measured by three quality metrics as shown in Figure
10.

dition number of the Jacobian matrix and Oddy metric [OGMBS88] as our metrics
[Knu00a] [Knu00b][KMO00].

Assume 2z € R? is the position vector of a vertex in a quad or a hex, and
x; € R® for i = 1,...,m are its neighboring vertices, where m = 2 for a quad and
m = 3 for a hex. Edge vectors are defined as e; = x; —x with ¢ = 1,...,m, and
the Jacobian matrix is J = [e1, ..., &m]. The determinant of the Jacobian matrix is
called Jacobian, or scaled Jacobian if edge vectors are normalized. An element is said
to be inverted if one of its Jacobians < 0. We use the Frobenius norm as a matrix
norm, |J| = (tr(JTJ)*?). The condition number of the Jacobian matrix is defined
as k(J) = |J||J 7", where |J 7! = %(l‘,). Therefore, the three quality metrics for a
vertex x in a quad or a hex are defined as follows:

Jacobian(z) = det(J) (28)
w@) = |7 ] (29)

_ (IR = I
Oddy(z) = der (30)

where m = 2 for quadrilateral meshes and m = 3 for hexahedral meshes.

In [ZB04] [ZB05], an optimization approach was used to improve the quality
of quad/hex meshes. The goal is to remove all the inverted elements and improve
the worst condition number of the Jacobian matrix. Here we combine our surface
smoothing and quality improvement schemes with the optimization-based approach.
We use the geometric flow to improve the quality of quad/hex meshes overall and
only use the optimization-based smoothing when necessary. Figure 10 shows the
comparison of the three quality criteria before and after quality improvement. We
can observe that the aspect ratio is improved by using the combined approach.
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(a) (b) () (d)

Fig. 13. The comparison of mesh quality of the human knee and the Venus model.
(a) the original hex mesh of the knee (2103 vertices, 1341 hexes); (b) the improved
hex mesh of the knee; (c) the original hex mesh of Venus (2983 vertices, 2135 hexes);
(d) the improved hex mesh of Venus.

We have applied our surface smoothing and quality improvement technique on
some biomolecular meshes. In Figure 4, the surface of a molecule consisting of three
amino acids is denoised, the surface quadrilateral mesh becomes more regular and
the aspect ratio is improved. The comparison of the quality of quad/hex meshes
of Ribosome 30S/50S are shown in Figure 1, Figure 11 and Figure 10. The surface
diffusion flow preserves a sphere accurately when the initial mesh is embedded and
close to a sphere and the tangent movement of boundary vertices doesn’t change
the shape, therefore features on the molecular surface are preserved. Our quality
improvement scheme also works for adaptive meshes as shown in Figure 7.

From Figure 6 and 8, we can observe that the mesh, especially the surface mesh,
becomes more regular and facial features of the human head are preserved as well
as the aspect ratio is improved (Figure 10). The interior and exterior hexahedral
meshes of the human head as shown in Figure 12 have been used in the electromag-
netic scattering simulations. Figure 13 shows the quality improvement of hexahedral
meshes, as well as the surface quadrilateral meshes, of the human knee and the Venus
model.

Figure 14 shows the quadrilateral meshes for a bubble, which was used in the
process of bubble elongation simulation using the boundary element method. First a
uniform quad mesh (Figure 14(a)) is extracted from volumetric data for the original
state of the bubble, then we use the templates defined in [ZB04] [ZB05] to construct
an adaptive mesh as shown in Figure 14(b), the boundary element solutions such
as the deformation error are taken as the refinement criteria. Finally we apply our
quality improvement techniques to improve the mesh quality. The improved quad
mesh is shown in Figure 14(c).
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Fig. 14. The comparison of mesh quality of the bubble. (a) a uniform quad mesh
(828 vertices, 826 quads); (b) an adaptive quad mesh (5140 vertices, 5138 quads);
(c) the improved adaptive quad mesh.

6 Conclusions

‘We have presented an approach to smooth the surface and improve the quality of
quadrilateral and hexahedral meshes. The surface diffusion flow is selected to denoise
surface meshes by adjusting each boundary vertex along its normal direction. The
surface diffusion flow is volume preserving, and also preserves a sphere accurately
when the input mesh is embedded and close to a sphere, therefore it is especially suit-
able for surface smoothing of biomolecular meshes because biomolecules are usually
modelled as a union of hard spheres. The vertex tangent movement doesn’t change
the surface shape, therefore surface features can be preserved. The interior vertices of
hex meshes are relocated to their mass centers in order to improve the aspect ratio.
In a summary, our approach has the properties of noise removal, feature preserva-
tion and mesh quality improvement. The resulting meshes are extensively used for
efficient and accurate finite element calculations.
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