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Summary. We present a method to decompose an arbitrary 3D piecewise linear
complex (PLC) into a constrained Delaunay tetrahedralization (CDT). It success-
fully resolves the problem of non-existence of a CDT by updating the input PLC into
another PLC which is topologically and geometrically equivalent to the original one
and does have a CDT. Based on a strong CDT existence condition, the redefinition is
done by a segment splitting and vertex perturbation. Once the CDT exists, a prac-
tically fast cavity retetrahedralization algorithm recovers the missing facets. This
method has been implemented and tested through various examples. In practice, it
behaves rather robust and efficient for relatively complicated 3D domains.

1 Introduction

A fundamental problem in unstructured mesh generation is to create a mesh that
represents a geometric domain bounded by piecewise linear faces and possibly with
interior constraining faces. It is also referred as boundary mesh generation. Numer-
ous applications depend on it.

This problem has been successfully solved in two dimensions. It is well known
that every polygonal domain can be triangulated into triangles without adding new
vertices (the Steiner points). Almost optimal algorithms (with a linear complexity
in practice) have been proposed [Lee86, Chew89].

The problem is significantly more difficult for arbitrarily shaped three dimen-
sional domains. Such domains can be described by piecewise linear complexes
(PLCs) [Miller96], which are objects more general than polyhedra. It is known [Schoen- 
hardt28, Bagemihl48, Chazelle84, Rambau03] even a simple polyhedron may not be  
tetrahedralizable without adding new vertices. The simplest example is the so-called
Schönhardt polyhedron [Schoenhardt28], which is a non-convex twisted triangular
prism. Moreover, the problem of deciding whether a simple polyhedron can be tetra-
hedralized is NP-hard [Ruppert92]. PLCs are usually much more complicated than
simple polyhedra. To guarantee an arbitrary PLC can always be meshed, methods
must resort to adding Steiner points. However, a number of difficult issues remain
to be resolved, such as the placement of the Steiner points, the minimum bound on
such points, and so on.
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The recently proposed Constrained Delaunay tetrahedralization (CDT) (cf. [Shew-
chuk02]) is a Delaunay-like tetrahedralization that is constrained to respect the
shape of a PLC. CDTs are obviously suitable structures for resolving the above 
problem. Not only they respect the boundary but also they have many nice mathe- 
matical properties inherited from Delaunay tetrahedralizations. Many applications
can be envisaged after getting a CDT. For instance, it is a good initial mesh for
getting a quality conforming Delaunay mesh [Shewchuk98b, Cheng04, Pav04] which is 
suitable for numerical methods.

A key question for constructing a CDT is to decide its existence, i.e., whether
a given PLC has a CDT without adding points. So far, Shewchuk [Shewchuk98a]
has proved the condition: if all segments of the PLC are strongly Delaunay, then
the CDT exists. The hint gained from this condition is: additional points can be
inserted only on the segments of the PLC.

Shewchuk [Shewchuk02] gave a segment recovery algorithm for constructing
CDTs. For a PLC X, it carefully introduces additional points on some segments of
X until the existence of a CDT can be guaranteed. This algorithm yields a provably
good bound on edge lengths. However, it requires to compute the local feature size
explicitly for protecting sharp corners (vertices with angles less than 90◦ formed by
segments). In [Si04a] we proposed a new segment recovery strategy which exploits
the available local geometric information to efficiently construct Steiner points on
segments. It needs not to compute the local feature sizes. Moreover sharp corners
are implicitly handled during the creation of the Steiner points. Both algorithms
tend to use fewer additional points than other methods which do edge protect prov-
ably [Pebay98, Murphy00, Cohen-Steiner02] too.

When the existence of a CDT is known, another key issue is to recover facets
of the PLC. Generally non-CDT algorithms [Pebay98, Murphy00, Cohen-Steiner02,
Weatherill94, George03, Du04] will continuously insert points on the missing facets
or the inside of the PLC. While CDT algorithms [Shewchuk02, Shewchuk03, Si04a]
recover the missing facets without introducing additional points. This again reduces
the number of Steiner points in a CDT.

By now Shewchuk has provided several facet recovery algorithms [Shewchuk00,
Shewchuk02, Shewchuk03]. The incremental facet insertion algorithm [Shewchuk02]
recovers facets one after one and the CDT is updated accordingly. For each facet, a
gift-wrapping algorithm is used for retetrahedralizing the two cavities around it. The
strategy is simple but the time complexity is poor and the performance is unstable
due to the gift-wrapping algorithm. The flip-based algorithm [Shewchuk03] recovers
each facet by a sequence of carefully ordered flip operations. It appears to be simple
and is likely to outperform other algorithms on most inputs. In order to guarantee
the correctness and termination, both algorithms require that a full perturbation
has to be applied on the set of vertices to remove the degeneracies.

In this paper we present a new CDT algorithm. The main difference from other
CDT algorithms is the practical exploitability of a strong CDT existence condition
which requires no local degeneracy on the vertices of the PLC. We propose a local
degeneracy removal algorithm to construct a new set of vertices out of the old one
which is consistent with the constraining segments and facets of the PLC. After the
strong condition is satisfied, facet recovery is done by a new cavity retetrahedraliza-
tion algorithm which is fast and robust in practice.

The remainder of this paper is organized as follows. We shortly recall the defini-
tions of PLCs and CDTs in the next section. Then the existence of CDT is discussed
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in section 3. Section 4 provides an overview of the proposed method. The individ-
ual algorithms are fully described in section 5, 6, and 7. Finally we present some
meshing results from publicly available examples.

2 PLCs and CDTs

A piecewise linear complexes (PLC) proposed by Miller, Teng, Walkington, and
Wang [Miller96] is a general boundary description for three-dimensional domains.
Simply saying, a PLC X is a set of vertices, together with a collection of segments,
and facets. Like a simplical complex, any two components of X are either disjoint or
meet in a common face, e.g., two segments can only intersect at a vertex of X, and
two facets can only intersect at a collection of segments and vertices of X, and so
on. A PLC facet has no analogue in a simplical complex. Each facet of X is indeed
a two-dimensional polygonal region embedded in three dimensions, it may not be
convex and possibly contains holes, isolated segments and vertices.

PLCs are more general than polyhedra in the sense that every polyhedron is a
PLC but not vice versa. For instance, a PLC containing a segment inside can’t be
represented by any polyhedron. Surface triangulations are one special type of PLCs -
each facet is a triangle. Hence PLCs are able to approximate arbitrary complicated
and curved shapes. In addition, many popular polygonal file formats (e.g., STL,
OFF, PLY, and [Si04b]) can be directly used or slightly modified to describe PLCs.

Given a PLC X, Shewchuk [Shewchuk02] defined a CDT of X as follows:
Let V be the set of vertices of X. σ is any simplex (tetrahedron, triangle, edge

or vertex) formed by vertices of V . σ is Delaunay if there exists a circumsphere
of σ that encloses no vertex of V . The Delaunay tetrahedralization D of V is a
tetrahedralization that all simplices of D are Delaunay. D is unique if V is general,
i.e., no five or more vertices lie on a common sphere.

The visibility between two vertices p and q is occluded if there is a constraining
facet f such that p and q lie on opposite sides of the plane that includes f , and the
line segment pq intersects this facet(see Figure 1). Segments do not occlude visibility.
For example, in Figure 1, c and d can see each other even if ab is a segment.

A tetrahedron t formed by vertices of X is constrained Delaunay if its circum-
sphere encloses no vertex of X which is visible from any point in the relative interior
of t (see Figure 1).

A tetrahedralization T is a constrained tetrahedralization of X if T and X have
exactly the same vertices, and the tetrahedra in T cover the convex hull of V . Every
segment of X is an edge of T , every facet of X is a union of triangular faces of T .

A constrained tetrahedralization T of X is said to be a constrained Delaunay
tetrahedralization (CDT) of X if each tetrahedron of T is constrained Delaunay.

Intuitively, the definitions of Delaunay tetrahedralization and constrained De-
launay tetrahedralization are the same except that, for the CDT, we ignore the
volume of a sphere whenever the sphere passes through a facet of X.

Let T be a CDT of X. A facet of X is represented by a set of coplanar triangular
faces of T . Such faces are called subfaces for distinguishing them from other faces
of T . The set of subfaces of a facet form a two-dimensional constrained Delaunay
triangulation.
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Fig. 1. Constrained Delaunay tetrahedron. The shaded region represents a facet f
of X including vertices a, b, c and d. Vertices p and q lie on opposite sides of f , they
can not see each other. While c and d can see each other even if ab is a segment of
X. St is the circumsphere of tetrahedron t (abcp) and it encloses q but not d, t is
constrained Delaunay.

3 The Existence of CDT

Given a PLC X. Generally, the CDT of X may not exist. One reason is that X may
not be tetrahedralizable at all. Even the constrained tetrahedralization of X exists,
it may still not have a CDT. A key question for CDT algorithms is to decide under
what condition the CDT exists.

Shewchuk has proved a condition. Let σ be a simplex of X, σ is strongly Delaunay
if there exists a circumsphere of σ that passes through and encloses no other vertices
of X. Say X is edge-protected if every segment of X is strongly Delaunay.

Theorem 1 ( [Shewchuk98a]). If X is edge-protected, then X has a CDT.

This condition is useful in practice because it suggests that additional points can
be inserted on segments only. However, this condition does not help us to construct
the CDT. Suppose X has been made edge-protected (by splitting the segments into
smaller segments), algorithms [Shewchuk02, Shewchuk03, Si04a] need to carefully
do perturbations on the vertices of X in order to successfully recover the missing
subfaces.

In this paper, we use another less general condition which guarantees the exis-
tence of CDT, too.

Definition Let D be the Delaunay tetrahedralization of the vertices of X, t a
tetrahedron in D and t� an adjacent tetrahedron of t (sharing a face with t), V the
set of vertices of t, t�. If all vertices of V lie on a common sphere, V is called a local
degeneracy of X.

Remark: If X contains no local degeneracy, then D is unique. However, the set
of vertices of X may still be degenerate ( since arbitrary 5 or more vertices of X
can lie on a common sphere).

Theorem 2. If D contains no local degeneracy and contains all segments of X, then
the CDT of X exists.
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Proof: It is easy to show: if X satisfies the above condition, then the segments of
X are edge-protected.

This condition is stronger than Shewchuk’s condition since it implicitly satisfies
it. Its advantage is: the facet recovery can be carried out efficiently. Section 7 presents
such an algorithm.

4 The Algorithm

Let the initial PLC be X0. The CDT is constructed by the following consecutive
steps:

(1) Construct an initial Delaunay tetrahedralization D0 of the vertices of X0.
(2) Recover the segments of X0 in D0 by incrementally inserting points on missing

segments, update X0 → X1 and D0 → D1 with the newly inserted points
respectively.

(3) Remove the local degeneracies in X1 by either perturbing vertices or inserting
new vertices, update X1 → X2 and D1 → D2 with the newly inserted points
respectively.

(4) Recover the subfaces of X2 in D2 by a cavity retetrahedralization method.

In step (1), D0 can be efficiently constructed by any standard algorithm, such
as [Edelsbrunner96]. D0 probably does not respect the segments and subfaces of X0.
After step (2) is done, D1 is a Delaunay tetrahedralization of vertices of X1 which
contains all segments of X1. However, D1 may not respect the subfaces of X1. Step
(3) guarantees the existence of a CDT. After all local degeneracies are removed, D2

is the unique Delaunay tetrahedralization of vertices of X2 and contains all segments
of X2. D2 may still not respect the subfaces of X2, while the existence of the CDT (of
X2) is guaranteed. Hence the step (4) can be carried out without inserting additional
vertices. These processes are detailed in the following sections.

5 Segment Recovery

A segment of X0 is missing if it is not in D0. The purpose of the segment recovery
algorithm is to update D0 into D1 such that D1 is a Delaunay tetrahedralization
and includes all segments of X0.

Let eiej be a segment with endpoints ei and ej , |eiej | be its Euclidean length.
A vertex is acute if at least two segments incident at it form an angle smaller than
90◦. We distinguish two types of segments, a segment is type-1 if its both endpoints
are not acute, it is type-2 if only one of its endpoints is acute. If both endpoints of
a segment are acute, it can be transformed into two type-2 segments by inserting a
vertex.

A segment is split into subsegments. Subsegments inherit types from original
segments. For example, let eiej be a subsegment of e1e2 which is a type-2 segment
and e1 is acute, eiej is type-2 although none of its endpoints is acute. For any vertex
v inserted on a type-2 segment (or subsegment), O(v) denotes its original acute
vertex. A tacit rule is used throughout this section, if eiej is type-2, it implies either
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ei or O(ei) is the acute vertex. In the following, unless it is explicitly mentioned, a
segment can be a segment or subsegment.

A vertex encroaches upon a segment if it lies inside or on the diameter sphere
of that segment. Remark: any missing segment must be encroached by at least one
vertex of X.

Let eiej be a missing segment, it will be split by a vertex v. The reference point
p of v, which is “responsible” for the insertion of v, is defined as follows:

• p encroaches upon eiej ;
• the circumradius of the smallest circumsphere of triangle eiejp is maximum over

other encroaching points of eiej .

Figure 2 illustrates how p is chosen. Notice that p may not unique (because several
points can share the same circumsphere), choose an arbitrary one in this case.

p3
p2

p4 = p
p1

ei ej

Fig. 2. The reference point p of a splitting segment eiej . p1, p2, p3 and p4 all
encroach upon eiej . p4 is chosen as the reference point because it forms the biggest
circumsphere with eiej .

The insertion of v to split eiej is governed by three rules given below. Let S(c, r)
denote a sphere centered at c with radius r:

1. eiej is type-1 (see Figure 3 (a)), then v := eiej ∩ S, where S(c, r) is the sphere
defined by the reference point p of v as follows:
if |eip| < 1

2
|eiej | then

c := ei, r := |eip|,
else if |ejp| < 1

2
|eiej | then

c := ej , r := |ejp|,
else

c := ei, r := 1
2
|eiej |,

end
2. eiej is type-2 (see Figure 3 (b)), let ek := O(ei), then v := ekej ∩ S, where

S(c, r) is the sphere defined by the reference point p of v with c := ek, r := |ekp|.
However, if the subsegment vej has length |vej | < |vp|, then we do not insert v
and use rule 3 to split the segment.
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3. eiej is type-2, let ek := O(ei), and v� is the rejected vertex by rule 2. then
v := ekej ∩ S, where S(c, r) is the sphere defined by the reference point p of v
as follows (see Figure 3 (c)):
c := ek

if |pv�| < 1
2
|eiv

�| then
r := |ekei|+ |eiv

�| − |pv�|
else

r := |ekei|+ 1
2
|eiv

�|
end

ei ej

v

p

r

S

p

r

S

ek ei ejv

p

r

S

ek ei ejv v�

(a) (b) (c)

Fig. 3. Illustrations of the segment splitting rules.

For several segments sharing an acute vertex, by repeatedly using rule 2 or 3,
a protecting ball is automatically created which ensures: no other vertex can be
inserted inside the ball. The effect is shown in Figure 4. Notice, the protecting ball
is not necessarily completely created, only the missing segments will be split and
protected. Existing segments remain untouched. This reduces the number of Steiner
points.

Below is the pseudo-code of the segment recovery algorithm.

Algorithm Delaunay Segments Recovery
Input: D0, X0.
Output: D1, X1.
initialize:

D1 := D0, X1 := X0;
repeat:

form a queue Q of missing segments in D1;
while Q -= ∅ do

remove a segment eiej from Q;
split eiej using rule 1, or 2, or 3;
update D1, X1;

end
until no segment of X1 is missing in D1



154 H. Si and K. Gärtner
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Fig. 4. The protecting ball of an acute vertex ei. v1, v2, v3, and, v4 are points
inserted on segments (by rule 2) sharing ei. They automatically create a protecting
ball of ei.

The termination of this algorithm can be proved by showing that the length
of every segment created is bounded by the local feature size divided by constant
depending only on the input. For a PLC X, the local feature size [Ruppert95] lfs(v)
of any point v in X is the radius of the smallest ball centered at v that intersects
two segments or vertices in X that do not intersect each other. The lfs() defines
a continuous map that maps every point in X into a positive value which suggests
how large the ball of the empty space around this point can be. The function lfs()
is only defined on the input PLC X and does not change as new points are inserted.

Theorem 3 ([Si04a]). Let eiej be a finally resulting subsegment,

• if eiej is type-1, then:
|eiej | ≥ min{lfs(ei), lfs(ej)}.

• if eiej is type-2, let ek := O(ei), then:
|eiej | ≥ 1

C
lfs(ek) when ei = ek,

|eiej | ≥ lfs(ek)sin(θ) when ei -= ek.
where C is two times the number of segments incident at ek and θ is the smallest
angle between them.

hence the Delaunay segments recovery algorithm terminates.

Practically, the algorithm terminates within a few steps creating the protection
ball sector. The constant C usually is no larger than 4.

6 Removing Local Degeneracies

In order to fulfill the condition of Theorem 2, all local degeneracies have to be re-
moved from D1. Techniques of perturbation [Edelsbrunner90] are effective to remove
degeneracies. However, they must be carefully applied in CDT algorithms.

We say a vertex of a PLC is perturbable if there exists an arbitrarily small
perturbation on it which does not affect the consistency of the PLC, otherwise, it is
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unperturbable. For example, a vertex on a segment or inside a facet is perturbable
since it can be perturbed arbitrarily along the segment vector or inside the facet
without affecting the collinearity of the segment or the coplanarity of the facet. Not
every vertex of a PLC is simply perturbable. If a vertex intersected by three or more
non-coplanar facets is perturbed, at least one facet becomes invalid (because it now
contains a non-coplanar vertex), hence it is unperturbable.

Let Δ be a local degenerate set of vertices in X1, i.e., Δ contains 5 vertices of
X1 which share a common sphere. If p ∈ Δ is perturbable, Δ can be removed by an
arbitrarily small perturbation on p. We call a perturbation is segment-safe if after
the perturbation no segment of X1 becomes non-Delaunay. A perturbable vertex
may not be segment-safe, see Figure 5 for an example.

p

Fig. 5. A perturbable vertex which is not segment-safe. The vertices of this facet
consist of a 3×3 square grid. The vertex p is perturbable but not segment-safe when
the four edges opposite it are all segments. Whatever it moves in the facet, at least
one segment becomes non-Delaunay.

Δ is said to be removable if there exits a vertex p ∈ Δ, such that:

• p is perturbable; and
• there exists a perturbation of p which is segment-safe.

Otherwise, Δ is unremovable.
If Δ is unremovable. We introduce a new point vb, called break point, it is chosen

as follows:

• If the vertices of Δ are affinely independent. Let SΔ be the common sphere
shared by them. vb is inside SΔ.

• If the vertices of Δ are affinly dependent, i.e., four of them are coplanar. Let
CΔ be the common circle shared by the four vertices. vb is coplanar with the
four vertices and inside CΔ.

vb will break the local degeneracy (see Figure 6).
A break point may encroach upon one or more segments and subfaces of X2. In

this case, it will not be inserted. Instead, the following boundary protection procedure
is called:

1. For each encroached segment, add its perturbed circumcenter to X2. Updating
D2, X2 accordingly;
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vbvb

Fig. 6. The break point. On the left is a set of locally degenerate points and one of
its Delaunay triangulations. vb is a break point for removing the local degeneracy.
On the right is the unique Delaunay triangulation after vb is inserted.

2. For each encroached subface, compute its perturbed circumcenter x. If x en-
croaches upon any segments, it is not inserted, goto step 1 to split the encroached
segments. Otherwise, add x to X2. Updating D2, X2 accordingly;

3 Call the Delaunay segment recovery algorithm to recover all missing segments
of X2 in D2.

The complete algorithm is listed below:

Algorithm Local Degeneracy Removal
Input: D1, X1.
Output: D2, X2.
initialize:

D2 := D1, X2 := X1;
repeat:

form a queue Q of local degeneracies of D2;
while Q -= ∅ do

remove a local degeneracy Δ from Q;
if Δ is removable then

Remove Δ by a small perturbation;
else

Compute a vb of Δ;
if vb encroaches upon any segment and subface then

Push Δ into Q;
Call the boundary protection procedure;

else
Insert vb to break Δ;
update D2, X2;

endif
endif

endwhile
until D2 contains no local degeneracy;

In our implementation, we choose vb be the circumcenter of the common sphere
of Δ. It is important that vb should not create a new local degeneracy with other
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existing vertices. This can be checked before inserting the point. If so, we should
not insert vb but choose another location. Notice that such case only can happen
when the input PLC is highly symmetric, e.g., in Figure 5. A simple strategy is to
add a randomized perturbation on each vb. After the perturbation, the probability
to create a symmetric point configuration again is nearly zero. Due to that reason,
the points added for boundary protecting are perturbed, too.

Some break points may locate outside X2. They will be removed after the CDT
of X2 is constructed.

The termination of the local degeneracy removal algorithm is due to the fact
that the number of unremovable local degeneracies can only be decreased and no
new local degeneracies are created by break points and segment protecting points.

7 Facet Recovery

The segment recovery and local degeneracy removal algorithms have produced X2

such that it has a CDT (guaranteed by Theorem 2). Let T be a CDT of X2. Gen-
erally, D2 -= T because some subfaces of T are non-Delaunay faces and penetrated
by edges of D2. This section describes an algorithm which incrementally transforms
D2 into T . No additional points are needed in the transformation.

The general steps of our algorithm are similar to [Shewchuk02]. At initialization,
let T (0) := D2; add all missing subfaces into a queue Q. The algorithm starts to
recover the subfaces in Q until Q is empty. At each step i, the algorithm recovers a
set of missing subfaces in T (i), update T (i) into T (i+1). After m steps Q is empty,
and T = T (m).

At step i(i < m), several missing subfaces are recovered together. We define a
missing region Ω to be a set of coplanar subfaces of X2 such that

• all subfaces of Ω belong to one facet of X2;
• the boundary edges of Ω are edges of T (i); and
• the internal edges of Ω are missing in T (i).

Hence Ω is a connected set of missing coplanar subfaces. It may not simply con-
nected, i.e., Ω can contain a hole inside (see Figure 7 (a)). Each missing subface
belongs to one missing region. A facet can have more than one missing regions.

Ω

(a) (b)

Fig. 7. (a) The shaded area highlights a non-simply connected missing region Ω.
(b) A cavity C at (step i) is illustrated.
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When a Ω is found, the formcavity procedure (described below) forms two cav-
ities at each side of Ω. Each cavity is bounded by subfaces of Ω and faces of T (i)

(see Figure 7 (b)).

1. Find all tetrahedra in T (i) that intersect the relative interior of Ω, delete them
from T (i). This creates a hole inside T (i).

2. Insert the missing subfaces of Ω into the hole to split it into two separated
cavities, one at each side of Ω.

Each cavity C is filled with a set of new tetrahedra by the following cavity
retetrahedralization procedure. Let V be the set of vertices of C.

1. Verify C, expand C if it is necessary.
(1) Form a queue Q containing all non-strongly Delaunay faces of C in V ;
(2) For each face σ ∈ Q and σ still in C,

let t be the tetrahedron adjacent to C and holds σ;
remove σ from C;
for each face Δt of t, Δt -= σ do

if Δt is a face of C then remove Δt from C;
else add Δt into C; end

end
Update C, V ;

(3) Repeat (1) if some faces of C are not strongly Delaunay in V .
See Figure 8 for an example of the expansion of C.

2. Retetrahedralize C.
(1) Construct a Delaunay tetrahedralization DC of the vertices of the C.
(2) Identify faces of C in DC , mark each tetrahedron of DC to be “inside” or

“outside”.
(3) Remove tetrahedra marked as “outside” from DC , and fill the remaining

tetrahedra into C.
Figure 9 illustrates a two dimensional example of the retetrahedralization pro-
cedure.

e1 e2

q1

p2

p1

q2

σ

e1 e2

q1

p2

p1

q2

σ

Fig. 8. The expansion of the cavity (illustrated in 2D). Left: e1e2 is the segment
going to recover. Edges below e1e2 is the faces of the cavity C. p1q2 is not strongly
Delaunay. Right: C is expanded by removing two edges p1q1 and p1q2 from C and
adding one edge q1q2 into C.
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(a) (b) (c) (d)

Fig. 9. Cavity triangulation (illustrated in 2D). (a) Two initial cavities separated
by a constraining segment. (b) The two Delaunay triangulations constructed at
each side of the segment. (c) Mark triangles as “inside” or “outside”. (d) Remove
“outside” triangles.

Algorithm Facet Recovery
Input: D2, X2.
Output: The CDT T of X2.
initialize:

T := D2;
Repeat:

form a queue Q of missing subfaces in T ;
while Q -= ∅ do

remove an unrecovered subface f from Q;
form a missing region Ω containing f ;
form two cavities C1, C2 by formcavity subroutine;
for each Ci, i = {1, 2} do

Call cavity retetrahedralization subroutine;
end

end
until no subfaces are missing in T .

Theorem 4. The facet recovery algorithm terminates.

Proof: We show that the cavity retetrahedralization subroutine will always succeed,
hence the missing region found at each step can be recovered without getting stuck.

The step 1 (face verification) of the cavity retetrahedralization algorithm guar-
antees the step 2 can be correctly executed since every strongly Delaunay simplex
of V will appear in any Delaunay tetrahedralization of V . Hence the face identifi-
cation in step 2 must be successful. What remains is to prove two issues in the face
verification step: (1) the expansion of C terminates; and (2) the missing subfaces
due to the expansion of C can be recovered later.

Let Ψ be the set of faces of D2 such that no face of Ψ is crossed by any subfaces
of X2. Clearly, Ψ -= ∅ and any face Δt ∈ Ψ is strongly Delaunay and exists in any
T (i). The set Ψ limits the expansion of C, i.e., C stops expanding at σ when σ ∈ Ψ .

Let V ol(C) be the inside volume of C. During the expansion of C some subfaces
are missing. Notice that the missing region Ω� formed by these missing subfaces is
completely inside C, hence V ol(C�) < V ol(C), where C� is the cavity formed from
Ω�. This relation holds if the expansion of C� still causes some other subfaces miss-
ing and results another new cavity. Such sequence will terminate since the value of

The complete facet recovery algorithm is summaried as follows:
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V ol() can not be negative.

Theorem 5. T created by the facet recovery algorithm is a CDT.

Proof: We first show T (1) is a CDT. T (1) is the result of cavity retetrahedralization
algorithm on T (0). Tetrahedra of T (1) which are outside and not adjacent to the
cavities remain Delaunay. Let t be a tetrahedron created inside a cavity C, St is its
circumsphere. Let t� be another tetrahedron in T (1) sharing a face σ with t, v be
the vertex of t� opposite to σ. We have the following cases:

(1) σ is a subface. Then t is constrained Delaunay even if St encloses v, i.e, the
inside of t is not visible by v, otherwise at least a segment is non-Delaunay and
can not exist in T (0);

(2) σ is a face inside C, then St must not enclose v (guaranteed by the cavity
retetrahedralization algorithm).

(3) σ is a face on C, then σ is not a subface, St must not enclose v. Otherwise, T (0)

is not a Delaunay tetrahedralization since the circumsphere of t� is not empty,
i.e., it encloses the point of t opposite to σ.

By induction, after step i, i > 1, T (i) is a CDT. Now we can show T (i+1) is a
CDT by using the similar arguments as above. The only difference is in the case (3)
which is stated below:

(3) σ is a face on C, then we have two cases,
a. σ is not a subface, St must not enclose v. Otherwise, T (i) is not a CDT

since the circumsphere of t� encloses the point of t opposite to σ which is
also visible from the inside of t�.

b. σ is a subface, then t is constrained Delaunay even if St encloses v.

Thus on the finish of the facet recovery algorithm T = T (m) is a CDT.

8 Experimental Results

This algorithm has been implemented and in our 3D quality Delaunay mesh gen-
erator - TetGen [Si04b] (http://tetgen.berlios.de). We have tested the program
with a number of examples not only having simple but also relatively complicated
geometries. The algorithm runs rather efficiently compares to the old version of Tet-
Gen which uses gift-wrapping algorithm. For example, for a cavity having around
300 faces and 150 vertices, the gift-wrapping algorithm needs few minites to finish
while the cavity retetrahedralization algorithm finishes in less than 1 second. To
test the stability of the algorithm as well as our implementation, we purposely chose
some models which the surface meshes are rather badly discretized. They are most
likely to pull down the program if the algorithm has defect. On most of these models
the program successfully produced CDTs as long as the surface meshes are PLCs.

The following two PLC models can be freely downloaded from Inria’s large repos-
itory http://www-rocq1.inria.fr/gamma.

The Cup-holder (in Figure 10) has a simple geometry (918 vertices, 1848 trian-
gles). 1261 points are added (262 break points and 999 protecting points). There are
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157 missing subfaces, the biggest size of a cavity contains 40 faces. Moreover, the
effect of removing local degeneracies can be visualized on the right picture.

The monster4 (in Figure 11) consists of 1392 vertices, 2784 triangles. It has
complicated distribution of segments and facets as shown in the left picture. Our
algorithm added 2782 Steiner points (502 break points and 2226 protecting points).

Fig. 10. Example 1 (Cup-holder). Left: the PLC. Right: the CDT.

Fig. 11. Example 2 (monster4). Left: the PLC. Right: the CDT.

The geometry of Figure 12 is a human heart inside a body. The surface mesh
of the heart is internal boundary separating two regions. Hence this model is made
up of multiple domains. In spite of the complexities in the geometries, the point
set contain no local degeneracy. Hence the CDT only require few additional points
(compare to the input number of points) for protecting segments. The CDT is shown
in the middle. One can see that the tetrahedra of the CDT are usually very long
and skinny. The picture on the right shows the better quality tetrahedra obtained
by performing a Delaunay refinement on the CDT. The number of additional points
for improving the mesh quality are much bigger than that of getting a CDT.
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Fig. 12. Example 3 (Heart). Left: the PLC. Middle: the CDT. Right: the quality
mesh. A vertical cut has been made on the meshes so that the internal boundaries
can be seen.
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