
Stitching and Filling: Creating Conformal
Faceted Geometry

Paresh S. Patel1, David L. Marcum2, and Michael G. Remotigue3

1 Computational Simulation and Design Center, ERC, Mississippi State
University, Mississippi State, MS 39762, U.S.A. patel@erc.msstate.edu

2 Computational Simulation and Design Center, ERC, Mississippi State
University, Mississippi State, MS 39762, U.S.A. marcum@erc.msstate.edu

3 Computational Simulation and Design Center, ERC, Mississippi State
University, Mississippi State, MS 39762, U.S.A. remo@erc.msstate.edu

Summary. Consistent and accurate representation of geometry is required by a
number of applications such as mesh generation, rapid prototyping, manufacturing,
and computer graphics. Unfortunately, faceted Computer Aided Design (CAD) mod-
els received by downstream applications have many issues that pose problems for
their successful usability. Automatic or semi-automatic tools are needed to process
the geometry to make it suitable for these downstream applications. An algorithm
is presented to detect commonly found geometrical and topological issues in the
faceted geometry and process them with minimum user interaction. The present
algorithm is based on the iterative vertex pair contraction and expansion operations
called stitching and filling respectively. The combination of generality, accuracy, and
efficiency of this algorithm seems to be a significant improvement over existing tech-
niques. Results are presented showing the effectiveness of the algorithm to process
two- and three-dimensional configurations.

1 Introduction

Computational design, analysis, optimization, and manufacturing have become an
integral part of the product development process in automotive, aerospace, elec-
tronics, and many other industries. The simulation-based design process begins
with creating a detailed geometry model in a Computer Aided Design (CAD) sys-
tem. This CAD model is the starting point for many downstream applications such
as mesh generation, structural/fluid/thermal analysis, rapid prototyping, numerical
controlled machining, casting, computer graphics, real time rendering. Each of these
downstream applications has specific requirements for the geometry definition and
representation. Hence, success of the downstream application strongly depends on
accuracy and consistency of the input geometry.

The Computational Fluid Dynamics (CFD) simulation process has several stages
including pre-processing, flow solution, and post-processing of the results. Typically,
pre-processing involves geometry cleanup and mesh generation to discretize the com-
putational domain. In recent years, many automatic structured and unstructured

240 Paresh S. Patel, David L. Marcum, and Michael G. Remotigue

mesh generation methods emerged. Most of these methods require a suitable (i.e.
a clean well connected water-tight) geometry to start the grid generation process.
Unfortunately, CAD data translated through neutral file formats like IGES [IGE88]
and STL [STL89] have many geometrical and topological issues that prevent au-
tomatic creation of a water-tight geometry. They have many gaps, cracks, holes,
overlaps, T-connections, invalid topology, inconsistent orientations. As a result of
these issues or errors, true automation of the grid generation process is still elu-
sive. The analyst has to manually clean the geometry to make it suitable for grid
generation. This cleanup (pre-meshing) process is very time consuming, expensive,
and tedious task for a design/analysis engineer. For realistic simulations, this is the
single most labor-intensive task in the process, preventing true auto-meshing.

An algorithm is developed to detect the commonly found geometrical and topo-
logical issues and process them automatically to build topology information. The
present algorithm is based on the iterative vertex pair contraction and expan-
sion operations called stitching and filling respectively. The algorithm closes small
gaps/overlaps via the stitching operation and fills big gaps by adding new faces
through the filling operation to process the model accurately. This algorithm is
general and can process manifold as well as non-manifold geometry models. More-
over, the present algorithm uses a spatial data structure, octree, for searching and
neighbor finding to process large models efficiently.

2 Related Work

Adaptive Cartesian grid generation method [Aft97] based approaches [HLBZ02,
WS02] can be used for CAD cleanup and surface triangulation. Hu et al. [HLBZ02]
has utilized an overlay grid, obtained through Cartesian grid generation, to cleanup
and reconstruct the geometry. Intersecting points of the overlay grid and geome-
try (water-tight volume) is reconstructed using a point cloud. In their work, it has
been reported that this approach does not work for a complex configuration. Wang
et al. [WS02] have also demonstrated the use of an adaptive Cartesian grid gen-
eration method for ’dirty’ geometry clean up to get a surface triangulation of a
complex configuration. Geometry is used to get the intersection/projection points
to reconstruct the surface from these points. Further improvement of these ap-
proaches [HLBZ02, WS02] can be achieved by targeting only the bad areas with
gaps and overlaps. Cartesian mesh-based approaches reconstruct the geometry ap-
proximately using the intersecting/projection points information; hence, output ge-
ometry is not accurate. Even if there is a small error in some part of the geometry,
these approaches rebuild the entire model approximately, and accuracy depends on
the refined Cartesian mesh cell size. Moreover, it may not be efficient to find many
intersection/projection points if the Cartesian mesh is very fine, which is needed to
achieve accuracy.

Many computer graphics and real time rendering applications also require an
error free input geometry model. Baum et al. [BMSW91] developed a series of algo-
rithms to preprocess the input geometry to meet the requirements of mesh based ra-
diosity computation algorithms. Murali et al. [MF97] described an algorithm based
on space subdivision to construct a consistent solid and boundary representation
from polygons. This technique is simple and works well in the absence of degen-
eracies and narrow angles among neighboring polygons. It also requires significant

Stitching and Filling: Creating Conformal Faceted Geometry 241

amount of time to process even small models with few hundred polygons. Gueziec
et al. [GTLH01] developed greedy strategies to convert a set of non-manifold polyg-
onal surfaces to a manifold. The aim of their work is to modify the topology of
surfaces, not to correct geometrical errors. Stereo Lithography (STL) is a widely
used data exchange format in the Rapid Prototyping industry. In order to manu-
facture models correctly, input geometry must be geometrically and topologically
correct. However, real world geometries translated through the .STL files generally
have many geometrical and topological errors like gaps, overlaps, intersections, in-
consistent orientations. Rock and Wozny [RW92] have used an AVL tree data struc-
ture to locate neighbor vertices efficiently to build model topology from a given set
of unordered triangular facets. Bohn and Wozny [BW92] described a solution to
achieve shell-closure of polyhedral CAD-models by extracting and triangulating the
directed Jordan curves in three-dimensions to fill gaps. Makela and Dolenc [MD93]
developed methods to handle overlapping and intersecting triangles efficiently. Sheng
and Meier [SM95] have used a technique based on incremental matching and merg-
ing of boundaries of surface models to repair gaps. Their technique merges small as
well as large gaps to process the models. Hence, it is not accurate to process large
gaps due to missing geometry or polygons. Morvan and Fadel [MF96b] developed a
virtual environment to correct the errors in a given model interactively, which is very
time consuming and expensive to process large models. Barequet et al. [BK97, BS95]
used a computer vision technique called geometric hashing [KSSS86, SS87] to repair
geometrical and topological errors in the boundary representation (b-rep) of two-
manifold geometry models. Recently, Patel et al. [PMR05] developed a technique
based on a modified iterative vertex pair contraction operation called stitching to
build topology information for manifold and non-manifold models. This work is an
extension of the topology generation algorithm [PMR05] to process geometry models
more accurately.

It seems previous mesh-based efforts [BK97, BS95, BW92, MD93, MF96b,
RW92, SM95] assume that geometry models to be processed are two-manifold or
use some special procedure to be able to handle non-manifold model like a two-
manifold model. This assumption poses many restrictions not only the input model
topology type but also on the processing algorithm design. The geometry model
processing algorithm alters the topology of the input models. Hence, it is possible
that even if the input geometry model is manifold, the processed model can be
non-manifold. The present algorithm explicity supports manifold and non-manifold
geometry models. Capability of handling manifold and non-manifold topologies dur-
ing the geometry processing makes the procedure more general and flexible. Some of
the previous approaches [BK97, BS95, BW92] collected the Jordan curves that are
non-intersecting three-dimensional closed polygonals. These polygons are then tri-
angulated to fill the gaps and holes. These approaches assume that boundary edges
form a closed polygonal loop. However, it is possible that a set of boundary edges
may not form Jordon curves and produce a valid triangulation of holes or require
some user interaction in these situations. The filling process of the present algorithm
uses a different approach to handle such situations. It does not require to form Jor-
dan curves to fill gaps with new triangles. Moreover, the present algorithm stitches
small gaps/overlaps and fills big gaps by adding new triangles to process the model
accurately. In addition, it uses the octree data structure for searching and neighbor
finding to process large models efficiently. In this way, the present procedure offers

242 Paresh S. Patel, David L. Marcum, and Michael G. Remotigue

combined benefits of generality, accuracy and efficiency for automatic processing of
faceted geometry.

3 Geometry and Topology Representation

CAD models are often represented as a set of triangulated surfaces in three-
dimensional Euclidean space R3 [J. 98]. Let us define a geometry model M =
(V, F) as a set of vertices V and a set of triangular faces F . The vertex list
V = (v1, v2, ..., vm) is an ordered sequence of vertices. Each vertex vi is defined
by three coordinates (xi, yi, zi) and a unique index. The face list F = (f1, f2, ..., fn)
is also an ordered sequence of faces. Every face or triangle fi is defined by an ordered
list of three vertex indices (j, k, l) and a unique index. A face made of vertices vj , vk

and vl can be denoted as 5vjvkvl. An edge ei is defined by an ordered sequence of
two vertex indices (j, k). It can be denoted as vjvk. An edge with one incident face is
called a boundary edge and its end points are called boundary vertices. An edge with
two and more than two incident faces is called a manifold edge and non-manifold
edge respectively. Note that the geometry model does not have topology or adja-
cency information. Topology information tells how geometric objects are connected.
Many downstream applications need such information for further use of geometry
models. The goal is to develop an algorithm to process geometrical and topologi-
cal issues and build the topology information (neighbor maps) with minimum user
interaction.

4 The Topology Generation Algorithm

The present algorithm is based on the iterative vertex pair contraction and expansion
operations to process the geometrical and topological issues. An edge-split operation
is introduced to make vertex pair contraction [GH97, PH97] more reliable and ac-
curate. Mainly, it consists of boundary detection, boundary vertex pair generation,
iterative vertex pair contraction and expansion with the following specific steps:

(i) Read and pre-process the input geometry model represented by vertices and
indexed faces.

(ii) Detect and mark boundary edges and vertices.
(iii) Build the Octree data structure [H. 90a, H. 90b] for efficient searching.
(iv) Generate a list of boundary vertex pairs. For each of the boundary vertices

search for other boundary vertices or edges within a user specified resolution
tolerance, .r, to pair with and insert into the list.

(v) Sort the list of boundary vertex pairs using a cost function that is dependent
on the distance between the paired vertices.

(vi) Iteratively remove a boundary vertex pair from the sorted list with minimum
cost. Perform the vertex pair contraction operation, if the cost of the vertex
pair is less then the user specified glue tolerance, .g, otherwise perform the
vertex pair expansion operation. Update the connectivity information during
the vertex pair contraction and expansion operations.

(vii) Output the processed geometry model with adjacency information.

Detailed description of these steps is presented in the following sections.

Stitching and Filling: Creating Conformal Faceted Geometry 243

4.1 Pre-processing

First, build and pre-process the input geometry model represented by vertices and
indexed faces. In this step, initialize the data structure and generate the list of
vertices and faces and classify them. At this point the connectivity among the faces
is not known. The goal is to find the matching boundary edges and merge them
to build the topology information and correct the geometrical issues for the entire
model. Now, detect the boundary edges and vertices by finding the number of faces
attached to each edge. If an edge has one incident face then it is a boundary edge
and incident vertices of a boundary edge are boundary vertices. Geometric entities
are created, classified and marked with flags during this step for further processing.

4.2 Spatial Data Structure

To build the list of the boundary vertex pairs, for a given boundary vertex, other
boundary vertices or edges within the resolution tolerance, .r, need to be searched.
Hence, efficiency of the algorithm strongly depends on the choice of the data
structure used for answering such queries. There are many spatial data struc-
tures [H. 90a, H. 90b] that can be used for this type of range queries. However,
the octree, a simple yet powerful spatial data structure, is used in the present algo-
rithm. A bounding box covering the entire geometry model is the root or parent cell
of the octree. This root cell is recursively subdivided into eight children until each of
the children contains few geometric objects. The aim is to search for the boundary
objects in nearby region. Hence, only boundary objects are inserted into the tree to
reduce the amount of data associated with the spatial search. Once the tree data
structure is built, finding the geometric objects lying in a given search range is very
fast. For a detailed description of the octree data structure a bit of old but classic
references [H. 90a, H. 90b] can be reviewed.

4.3 Boundary Detection and Vertex Pairs

At this point, all the boundary objects are marked and the octree data structure
is built for efficient searching. For each boundary vertex, find other boundary ver-
tices/edges within the resolution tolerance using the octree search. As shown in
figure 1(a), vertex vi and vj are paired without splitting the boundary edge for con-
traction, if |vi − vj | ≤ .r. The boundary vertex pair generation procedure strongly
depends on the relative position of the boundary vertices to be paired. For example,
there is no clear correspondence between boundary vertices vi and vj in figure 1(b).
A large .r is required to pair them up. But, it is important to note that an ap-
propriate choice of the .r is very important. Too small .r can leave many potential
boundary vertex candidates un-paired. On the other hand, a large .r may pair in-
appropriate boundary vertices and makes the procedure less reliable. Moreover, the
vertex pair contraction without edge-split can not handle the T-joints (end point of
one edge lies within another edge) situations. This usually occurs when a big sur-
face is in the neighborhood of two small surfaces and forms a T-like shape near the
junction of surfaces or when two neighboring curves are discretized using different
point distribution functions.

To make the procedure more reliable and handle T-joints, boundary vertex pair
contraction with edge-split is introduced. Consider the situation shown in figure 1(b),

244 Paresh S. Patel, David L. Marcum, and Michael G. Remotigue

there is no other boundary vertex within a smaller .r to pair vertex vi. However,
boundary edge vjvk split operation can create a vertex vp and boundary vertices vi

and vp can be paired without increasing .r. To find a nearby boundary edge, check
if orthogonal projection of vertex vi on a nearby boundary edge vjvk is possible. To

perform this check, lets define a =
→

vjvi and b =
→

vjvk. In theory, orthogonal projection
is possible as long as the following inequality is satisfied.

0 ≤ a · b
|b| ≤ |b| (1)

In practice, there may be a problem due to numerical inaccuracies to check the
inequality given in the equation (1). To make it numerically more stable and robust,
a threshold parameter α can be used and the resultant inequality relation is,

α ≤ a · b
|b| ≤ |b| − α (2)

It can be checked using equation (2) that orthogonal projection of the boundary ver-
tex vi on the boundary edge vjvk is possible. To compute the location of projection
point vp the following equation can be used,

vp =
b

|b|d (3)

where d = |vj − vp| = |a| cos θ = a · b/|b| = projection of a on b, and θ = ∠vivjvk.
Now, split the edge vjvk with respect to projection point location vp and pair the
boundary vertices vi and vp. Edge split operation adds a new vertex vp and face
5vpvjvk. The connectivity information for corresponding vertices and faces is also
updated that modifies the topology. It is possible that the projection point vp lies
very close to vertex vj when θ ≈ 900 and creates a new vertex and face due to edge-
split operation. It can be avoided by checking the distance d and reject the edge-split
operation, if d is small. The same check can be performed without computing d, the
parameter α in equation (2) can be chosen in such a way that the inequality is not
satisfied if the projection vertex vp and vj happen to be very close.

In this way, there are two advantages on using the parameter α in equation (2).
First, it takes care of the instabilities due to the numerical inaccuracies and makes
the check more stable. Second, it avoids the edge-split operation if the distance d is
small without any extra computations. The value of the parameter α can be 0 ≤ α ≤
0.5 |b|. As mentioned earlier, α = 0 makes the check numerically unstable and may
create projection vertex vp close to the boundary vertex vj . While α = 0.5 |b| does
not allow the edge-split operation in most cases but it may make boundary vertex
pair generation procedure less reliable. It is essentially the vertex pair generation
without edge-split operation. The present algorithm uses α = .g. A boundary vertex
pair of vertices vi and vj can be denoted as pair (vi, vj). All the boundary vertex pairs
generated with and without the edge-split operation are inserted in a heap keyed on
cost with the minimum cost pair at the top. The cost function of a boundary vertex
pair (vi, vj) is C(vi, vj) = |vi − vj |.

4.4 Iterative Vertex Pair Contraction

The topology generation algorithm iteratively removes a vertex pair (vi, vj) with
minimum cost from the heap and performs the contraction operation, if C(vi, vj) ≤

Stitching and Filling: Creating Conformal Faceted Geometry 245

Vi

Vj

V

(a) Without edge-split

Vi
Vj Vk

Vi
Vj Vk Vj Vk

VVp

Vn Vn Vn

(b) With edge-split

Fig. 1. Vertex pair contraction operation

.g. The boundary vertex pairs are merged to process the geometrical and topological
issues. A boundary vertex pair (vi, vj) contraction moves boundary vertices vi and vj

to a new location vi, vj or v̄ = (vi +vj)/2. Merging boundary vertices actually mod-
ifies the geometry and processes the geometrical issues such as gaps, intersections,
overlaps, etc. The vertex pair contraction operation also replaces faces and edges in-
cident to the vj with vi. This step modifies the topology of the model to process the
topological issues. The boundary vertex pair contraction operation generally does
not collapse faces. However, in case of geometry with long skinny surfaces, the ver-
tex pair contraction operation may produce degenerate faces that are removed from
the processed model. Hence, a boundary vertex pair contraction operation merges
two vertices and updates the connectivity information. It deletes a boundary vertex
and may delete one or more faces. Figure 1(a) and 1(b) show boundary vertex pair
contraction operations with and without edge-split respectively. The processing al-
gorithm iteratively removes the pair with minimum cost from the heap and performs
the vertex pair contraction operation, if the cost of the vertex pair is less than the
glue tolerance. This process is called stitching. Note that pair vertex contraction
moves boundary vertices and modifies the geometry model. An error is introduced
in the processed geometry model that is bounded by the resolution tolerance. Con-
sider the effect of the edge-split operation on the error introduced in the processed
model. As mentioned earlier, vertex pair contraction without edge-split requires to
use a larger resolution tolerance than with edge-split to pair boundary vertices and
produces more error. Hence, vertex pair contraction with edge-split operation is not
only more reliable and robust but also more accurate.

4.5 Iterative Vertex Pair Expansion

The vertex pair contraction operation with edge-split introduces less error in the
processed geometry model than that of without edge-split. It moves the vertices
physically in order to process the errors smaller than the glue tolerance. Hence, if

246 Paresh S. Patel, David L. Marcum, and Michael G. Remotigue

the errors are large in the model to be processed, then the vertex pair contraction
operation would require to choose a larger glue tolerance and produce more error
in the processed model. A new operation, vertex pair expansion, is developed to fill
the larger gaps with new triangles without moving the vertices as opposed to the
vertex pair contraction operation. It fills the gaps larger than the glue tolerance and
smaller than the resolution tolerance with new triangles without introducing any
error in the processed model. The boundary vertex pairs near the juction of surfaces
are penalized by setting their cost function to be zero. In this way, the boundary
vertex pairs are forced to be contracted to join disjoint surfaces.

Vi

Vj

Vi

Vj
Vk VkVn Vn

(a) Without edge-split

Vi
Vj Vk

Vi
Vj Vk

Vi
Vj VkVp Vp

Vn Vn Vn

(b) With edge-split

Fig. 2. Vertex pair expansion operation

The topology generation algorithm removes a vertex pair (vi, vj) with minimum
cost from the heap and performs the expansion operation, if .g < C(vi, vj) ≤ .r.
The boundary vertex pair (vi, vj) expansion adds one or more new triangles to fill
the gap. Addition of new triangles actually modifies the geometry and processes
the geometrical issues like gaps. The pair expansion also updates the list of inci-
dent faces to the vertices. This step modifies the topology of the model to process
the topological issues. Hence, the boundary vertex pair expansion operation adds
new faces and updates the topology information. Figure 2(a) shows the vertex pair
(vi, vj) expansion operation without edge-split. It adds two new triangles 5vivjvk

and 5vivjvn. Figure 2(b) shows the vertex pair expansion with edge-split. It also
adds two new triangles 5vivpvk and 5vivpvj . As mentioned earlier, if the value of
the resolution tolerance is big-enough, then the vertex pair expansion would add
a new triangle 5vivjvk without spliting the edge vjvk. The vertex pair expansion
may also add one triangle near already stitched or juction of surfaces that will be
disccused later in details. This iterative vertex pair expansion process is called fill-
ing. Note that filling does not move the vertices like stitching operation to process
the model. Therefore, it does not introduce any error in the processed model.

Stitching and Filling: Creating Conformal Faceted Geometry 247

In summary, the output of the algorithm is a well-suited discrete CAD model
along with the necessary topology information that can be an input for many down-
stream applications. In this mode the output mesh can be used as a background
mesh to subsequently generate a high-quality unstructured mesh using Advancing
Front Local Reconnection (AFLR) [MW95] algorithm. The current procedure is
based on an assumption of the locality of geometrical and topological issues. It is
assumed that the neighboring surface patches have small gaps/overlaps due to the
translation errors, numerical inaccuracies, tolerance settings in different systems,
etc. In practice, gaps/overlaps between the surfaces are generally very small so the
key assumption of locality is reasonable. However, there are many other issues that
may cause large gaps/overlaps. For example untrimmed or missing surfaces may
create large gaps and overlaps. These issues may violate the assumption of locality
and can be processed up to some extent.

5 Results and Discussion

The topology generation algorithm following the outline given in the previous sec-
tion is developed and implemented using object oriented technology in C++ on
a unix workstation. CAD models obtained from various systems are processed to
build correct topology information. Consider a simple plate as shown in Figure 3(a).
There is a small gap and overlap between two triangulated surfaces that needs to
be processed. Figure 3(b) shows the extracted boundary edges and boundary vertex
pairs for further processing. The resultant geometry after the stitching operation is
shown in Figure 3(c). Note that the stitching operation moves vertices physically
by changing their coordinates and introduces an error of the order of the resolution
tolerance. Figure 3(d) shows that there is no gap and overlap between two surfaces
in the processed geometry. Moreover, the topology (connectivity map) information
is available and can be used for downstream applications.

The stitching operation modifies the original model to process the geometrical
and topological issues. The same plate model can also be processed via filling oper-
ation. Figure 4 shows the processed geometry model. Unlike the stitching operation,
the filling does not move vertices and modify the original model. The original model
can be processed without introducing any error but it adds many self-intersecting
and skinny triangles in the boundary region of the processed model.

The stitching operation merges boundary vertices to process the geometry and
produces more error than the filling operation. However, if only filling operation is
used then it may introduce many new triangles in the boundary regions for large
models. To minimize the error in the processed model and reduce adding too many
triangles, the stitching and filling operations are used together as shown in figure 5.
Notice that small gaps/overlaps are merged together and large gaps are filled with
new triangles. In this way, combined use of the stitching and filling operations makes
the geometry processing more accurate and practical.

Figure 6(a) shows two cubes sharing a common curve with cracks and overlaps
between surfaces. The common curve is shared by four faces and it is required to
provide an explicit support for non-manifold topology to process this model. As men-
tioned earlier the topology generation algorithm can handle non-manifold situations
that provides more flexibility and generality. Figure 6(b) shows the geometrically

248 Paresh S. Patel, David L. Marcum, and Michael G. Remotigue

(a) Original geometry (b) Boundary edges and vertex
pairs

(c) Processed geometry (d) Boundary edges after pro-
cessing

Fig. 3. Plate showing the stitching operation

Fig. 4. Plate showing the filling operation

Fig. 5. Plate showing the stitching and filling operations

Stitching and Filling: Creating Conformal Faceted Geometry 249

and topologically well-defined model obtained after processing. Note that the topol-
ogy generation algorithm locally modifies the topology of the input model. Hence, it
is possible that even if the input geometry model is manifold the output or interme-
diate model may be non-manifold. The data structure used in the implementation
of present algorithm can support manifold and non-manifold topology.

(a) Original model (b) Processed model

Fig. 6. Two cubes sharing a common edge (non-manifold topology)

Figure 7(a) shows the triangulated model of a flying minnow. Figure 7(b) shows
the detected boundary edges of the same model. Figure 8(b) shows the remaining
gaps after the stitching operation. These gaps are then triangulated via the filling
operation. The flying minnow model consists of 5566 vertices and 9062 faces. The
resolution tolerance, .r, and the glue tolerance, .g, used are 0.1 and 0.01 mm respec-
tively. The boundary vertex pair generation process has formed 1162 vertex pairs,
of which about 1127 pairs are contracted and only 35 pairs are expanded during
the stitching and filling operations respectively. The filling operation may introduce
self-intersecting triangles in the boundary regions. Boundary edge detection on the
processed flying minnow model found no edge because it forms a closed volume and
each of the edges in the model is two-manifold.

Figure 9(a) shows the body shell of Infiniti G35 car model. Figure 9(b) shows
the boundary edges before processing. This model has 4283 vertices and 7448 faces.
Figure 10(a) is the processed vehicle model after the stitiching and filling process. To
verify the repairing process, boundary edges of the modified geometry are extracted
as shown in figure 10(b). It shows the boundary curves that are shared by only one
surface. Moreover, the topology information is also built during the processing. The
total number of boundary vertex pairs generated was 420 for the value of .r and .g

to be 1.0 and 0.01 mm respectively.
The discrete geometry of Infiniti G35 doors is shown in Figure 11(a). The model

consists of 6443 vertices and 10814 faces. It has a large gap near the upper-right
corner due to a missing surface. Figure 11(b) shows the enlarged view of the gap
that has to be processed. It is important to note that the size of the gaps and some of
the surfaces in the model are of the same order. Figure 12(a) and figure 12(b) show
the processed model and enlarged view of the rectangular region. The large gap is
filled with new triangles via the filling operation. The topology generation algorithm
performed about 827 vertex pair contractions and 92 vertex pair expansions in order
to process the model with .r and .g of 2.25 and 0.1 mm respectively. This test

250 Paresh S. Patel, David L. Marcum, and Michael G. Remotigue

(a)

(b)

Fig. 7. Flying minnow (a) Original geometry. (b) Boundary edges before processing.

Stitching and Filling: Creating Conformal Faceted Geometry 251

(a)

(b)

Fig. 8. Flying minnow (a) Processed geometry. (b) Gaps filled with new triangles.

252 Paresh S. Patel, David L. Marcum, and Michael G. Remotigue

(a)

(b)

Fig. 9. Body shell of Infiniti G35 (a) Original geometry. (b) Boundary edges before
processing.

case shows that the topology generation algorithm can even create small missing
geometry entities up to some extent. For example, it did add new faces in place of
a small missing surface near the upper-right corner of the door.

6 Conclusion

Automatic detection and processing of commonly found geometrical and topological
issues such as gaps, overlaps, intersections, T-connections, invalid or no topology,

Stitching and Filling: Creating Conformal Faceted Geometry 253

(a)

(b)

Fig. 10. Body shell of Infiniti G35 (a) Processed geometry. (b) Boundary edges
after processing.

etc. is achieved for two- and three-dimensional configurations. Unlike a CAD model
repair procedure that requires significant user interaction, the proposed methodology
is highly automated. Results demostrate that the generality, accuracy and efficiency
of the topology generation algorithm appears to be a significant improvement over
existing methodologies. In addition, the processed models are guaranteed to be free
of self-intersecting boundary edges. This work is a step towards automatic geometry
processing for mesh generation applications. There are many issues that need to be
addressed to automate the pre-processing of geometry for the same application. For
example, the user has to provide an appropriate value of distance threshold. It may

254 Paresh S. Patel, David L. Marcum, and Michael G. Remotigue

(a) (b)

Fig. 11. Doors and windows of Infiniti G35 (a) Original model. (b) Enlarged view
of the rectangular region showing the gap due to a missing surface.

(a) (b)

Fig. 12. Doors and windows of Infiniti G35 (a) Processed model. (b) Enlarged view
of the rectangular region shows that the gap is filled with triangles in the processed
model.

require the user to try different threshold values until a reasonable value is found. It
is found that small variation in distance threshold does not affect the results much
in most cases. However, selection of the distance threshold should be automatic and
adaptive. Currently, work is in progress to address these issues.

[Aft97] M. J. Aftosmis. Solution adaptive cartesian grid methods for aerody-
namics flows with complex geometries. von Karman Institute of Fluid
Dynamics, Lecture series 1997-02, 1997.

[BK97] G. Barequet and S. Kumar. Repairing cad models. In Proceedings:
IEEE Visualization, pages 363–370, Phoenix, AZ, 1997.

[BMSW91] D. R. Baum, S. Mann, K. P. Smith, and J. M. Widget. Making ra-
diosity usable: Automatic preprocessing and meshing techniques for the
generation of accurate radiosity solutions. In Proceedings: SIGGRAPH,
volume 25, pages 51–60, Las Vegas, Nevada, 1991. ACM.

[BS95] G. Barequet and M. Sharir. Filling gaps in the boundary of a polyhe-
dron. Computer Aided Design, 12(2):207–229, 1995.

Stitching and Filling: Creating Conformal Faceted Geometry 255

[BW92] J. H. Bohn and M. J. Wozny. Automatic cad-model repair: Shell-closure.
In In H. L. Marcus et al., eds., Proc. Solid Freeform Fabrication Symp.,
pages 86–94, Austin, TX, 1992. The Univ. of Texas.

[GH97] M. Garland and P. S. Heckbert. Surface simplification using quadratic
error metrics. In Proceedings: SIGGRAPH Computer Graphics, pages
209–216. ACM, 1997.

[GTLH01] A. Gueziec, G. Taubin, F. Lazarus, and B. Horn. Cutting and stitching:
converting sets of polygons to manifold surfaces. IEEE Transaction on
Computer Graphics, 7(2):136–151, 2001.

[H. 90a] H. Samet. Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Addison-Wesley, Reading, MA, 1990. ISBN
0-201-50300.

[H. 90b] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, Reading, MA, 1990. ISBN 0-201-50255-0.

[HLBZ02] J. Hu, Y. K. Lee, T. Blacker, and J. Zhu. Overlay grid based geometry
cleanup. In Proceedings: 11th International Meshing Roundtable, pages
313–324. Sandia National Laboratories, 2002.

[IGE88] Initial graphics exchange specification (iges) version 4.0. NBSIR 88-
3813, 1988.

[J. 98] J. F. Thompson and B. K. Soni and N. P. Weatherill. Handbook of Grid
Generation. CRC press, Boca Raton, Florida, 1998.

[KSSS86] A. Kalvin, E. Schonberg, J. T. Schwartz, and M. Sharir. Two-
dimensional model-based, boundary matching using footprints. Int J.
of Robotics Research, 5(4):38–55, 1986.

[MD93] I. Makela and A. Dolenc. Some efficient procedures for correcting tri-
angulated models. In In H. L. Marcus et al., eds., Proc. Solid Freeform
Fabrication Symp., pages 126–134, Austin, TX, 1993. The Univ. of
Texas.

[MF96a] S. M. Morvan and G. M. Fadel. Ivecs: An interactive virtual environment
for the correction of .stl files. In Conference on Virtual Design, Univ. of
California, Irvine, CA, 1996.

[MF96b] S. M. Morvan and G. M. Fadel. Ivecs, interactively correcting .stl files
in a virtual environment. In In H. L. Marcus et al., eds., Proc. Solid
Freeform Fabrication Symp., Austin, TX, 1996. The Univ. of Texas.

[MF96c] S. M. Morvan and G. M. Fadel. Virtual prototyping using .stl files.
International Body Engineering Conference (IBEC), Detroit, MI, 1996.

[MF97] T. M. Murali and T. A. Funkhouser. Consistent solid and boundary
representation from arbitrary polygonal data. In In Proc. Symp. On
Interactive 3D Graphics, pages 155–162, Providence, RI, 1997.

[MW95] D. L. Marcum and N. P. Weatherill. Unstructured grid generation us-
ing iterative point insertion and local reconnection. AIAA Journal,
33(9):1619–1625, 1995.

[PH97] J. Popovic and H. Hoppe. Progressive simplicial complexes. In Proceed-
ings: SIGGRAPH Computer Graphics, pages 217–224. ACM, 1997.

[PMR] P. S. Patel, D. L. Marcum, and M. G. Remotigue. Automatic cad
model topology generation. International Journal of Numerical Method
in Fluids, under review.

[PMR05] P. S. Patel, D. L. Marcum, and M. G. Remotigue. Building topological
information for triangulated models. SIAM Computational Science and
Engineering Conference, February 12-15, Orlando, Florida, 2005.

256 Paresh S. Patel, David L. Marcum, and Michael G. Remotigue

[RW92] S. J. Rock and M. J. Wozny. Generating topological information from
a bucket of facets. In In H. L. Marcus et al., eds., Proc. Solid Freeform
Fabrication Symp., pages 251–259, Austin, TX, 1992. The Univ. of
Texas.

[SM95] X. Sheng and I. R. Meier. Generating topological structures for surface
models. IEEE Computer Graphics and Applications, 15(6):35–41, 1995.

[SS87] J. T. Schwartz and M. Sharir. Identification of partially obscured objects
in two and three dimensions by matching noisy characteristics curves.
Int J. of Robotics Research, 6(2):29–44, 1987.

[STL89] Stereolithography interface specification (stl). valencia, ca. 3D Systems
Publications, 1989.

[WS02] Z. J. Wang and K. Srinivasan. An adaptive cartesian grid genera-
tion method for “dirty” geometries. International Journal of Numerical
Method in Fluids, 39:703–717, 2002.

