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This paper presents a new procedure to improve the quality of triangular meshes
defined on surfaces. The improvement is obtained by an iterative process in which
each node of the mesh is moved to a new position that minimizes certain objective
function. This objective function is derived from an algebraic quality measures of
the local mesh (the set of triangles connected to the adjustable or free node). The
optimization is done in the parametric mesh, where the presence of barriers in the
objective function maintains the free node inside the feasible region. In this way, the
original problem on the surface is transformed into a two-dimensional one on the
parametric space. In our case, the parametric space is a plane, chosen in terms of
the local mesh, in such a way that this mesh can be optimally projected performing
a valid mesh, that is, without inverted elements. In order to show the efficiency of
this smoothing procedure, its application is presented.

1 Introduction

For 2-D or 3-D meshes the quality improvement [Knu] can be obtained by an iterative
process in which each node of the mesh is moved to a new position that minimizes an
objective function [Fre|. This function is derived from a quality measure of the local
mesh. We have chosen, as a starting point in section 2, a 2-D objective function that
presents a barrier in the boundary of the feasible region (set of points where the free
node could be placed to get a valid local mesh, that is, without inverted elements).
This barrier has an important role because it avoids the optimization algorithm
to create a tangled mesh when it starts with a valid one. Nevertheless, objective
functions constructed by algebraic quality measures are only directly applicable to
inner nodes of 2-D or 3-D meshes, but not to its boundary nodes. To overcome this
problem, the local mesh, M (p), sited on a surface X, is orthogonally projected on a
plane P (the existence and search of this plane will be discuss in section 3) in such
a way that it performs a valid local mesh N(q). Therefore, it can be said that M (p)
is geometrically conforming with respect to P [Fre]. Here p is the free node on ¥
and ¢ is its projection on P. The optimization of M (p) is got by the appropriated
optimization of N(gq). To do this we try to get ideal triangles in N(q) that become
equilateral in M (p). In general, when the local mesh M(p) is on a surface, each
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triangle is placed on a different plane and it is not possible to define a feasible
region on Y. Nevertheless, this region is perfectly defined in N(q) as it is analyzed
in section 2.1.

To construct the objective function in N(g), it is first necessary to define the
objective function in M (p) and, afterward, to establish the connection between them.
A crucial aspect for this construction is to keep the barrier of the 2-D objective
function. This is done with a suitable approximation in the process that transforms
the original problem on X' into an entirely two-dimensional one on P. We develop
this approximation in section 2.2.

The optimization of N(g) becomes a two-dimensional iterative process. The op-
timal solutions of each two-dimensional problem form a sequence {xk} of points
belonging to P. We have checked in many numerical test that {xk} is always a
convergent sequence. It is important to underline that this iterative process only
takes into account the position of the free node in a discrete set of points, the points
on Y corresponding to {xk} and, therefore, it is not necessary that the surface is
smooth. Indeed, the surface determined by the piecewise linear interpolation of the
initial mesh is used as a reference to define the geometry of the domain.

If the node movement only responds to an improvement of the quality of the
mesh, it can happen that the optimized mesh loses details of the original surface.
To avoid this problem, every time the free node p is moved on X', the optimization
process only allows a small distance between the centroid of the triangles of M (p)
and the underlaying surface (the true surface, if it is known, or the piece-wise linear
interpolation, if it is not).

There are several alternatives to the previous method. For example, Garimella et
al. [Gar| develop a method to optimize meshes in which the nodes of the optimized
mesh are kept close to the original positions by imposing the Jacobians of the current
and original meshes to be also close. Frey et al. [Fre2] get a control of the gap
between the mesh and the surface by modifying the element-size (subdividing the
longest edges and collapsing the shortest ones) in terms of an approximation of
the smallest principal curvatures radius associated to the nodes. Rassineux et al.
[Ras] also use the smallest principal curvatures radius to estimate the element-size
compatible with a prescribed gap error. They construct a geometrical model by using
the Hermite diffuse interpolation in which local operations like edge swapping, node
removing, edge splitting, etc. are made to adapt the mesh size and shape. More
accurate approaches, that have into account the directional behavior of the surface,
have been considered in by Vigo [Vig] and, recently, by Frey in [Fre3].

Application of our proposed optimization technique is shown in section 4.

2 Construction of the Objective Function

As it is shown in [Fre], [Knul], and [Knu2] we can derive optimization functions from
algebraic quality measures of the elements belonging to a local mesh. Let us consider
a triangular mesh defined in R? and let ¢ be an triangle in the physical space whose
vertices are given by x = (2, yk)T € R? k = 0,1, 2. First, we are going to introduce
an algebraic quality measure for ¢. Let tg be the reference triangle with vertices
uo = (0,007, w; = (1,0)7, and us = (0,1)”. If we choose xo as the translation
vector, the affine map that takes tr to ¢t is x =Au + xg, where A is the Jacobian
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matrix of the affine map referenced to node x¢, given by A = (x1 — X0, X2 — Xo).

We will denote this type of affine maps as tr 2 ¢ Let now ¢ 1 be an ideal triangle
(not necessarily equilateral) whose vertices are wi, € R?, (k = 0,1,2) and let Wr =
(w1 — wo, w2 — wo) be the Jacobian matrix, referenced to node wyo, of the affine

map tr Jad tr ; then, we define S = AW{1 as the weighted Jacobian matrix of the

affine map t; 5t . In the particular case that t; was the equilateral triangle tg,
the Jacobian matrix W; = Wg will be defined by wo = (O,O)T, W, = (l,O)T and
we = (1/2,v/3/2)T.

We can use matrix norms, determinant or trace of S to construct algebraic
quality measures of t. For example, the Frobenius norm of S, defined by |S| =
\/tr (STS), is specially indicated because it is easily computable. Thus, it is shown
in [Knu] that ¢, = é% is an algebraic quality measure of ¢ , where o = det (S5). We

use this quality measure to construct an objective function. Let x = (=, y)T be the
position vector of the free node, and let S, be the weighted Jacobian matrix of the
m-th triangle of a valid local mesh of M triangles. The objective function associated
to m-th triangle is 7, = %, and the corresponding objective function for the

local mesh is the n-norm of (11,2, . ..,1:),

1
n

Ky, (x) = {Z m (X)] (1)

This objective function presents a barrier in the boundary of the feasible region that
avoids the optimization algorithm to create a tangled mesh when it starts with a
valid one.

Previous considerations and definitions are only directly applicable for 2-D (or
3-D) meshes, but some of them must be properly adapted when the meshes are
located on an arbitrary surface. For example, the concept of valid mesh is not clear
in this situation because neither the concept of inverted element is. We will deal
with these questions in next subsections.

2.1 Similarity Transformation for Surface and Parametric Meshes

Suppose that for each local mesh M (p) placed on the surface X, that is, with all
its nodes on X, it is possible to find a plane P such that the orthogonal projection
of M(p) on P is a valid mesh N(q). Moreover, suppose that we define the axes in
such a way that the z, y-plane coincide with P. If, in the feasible region of N(q), it
is possible to define the surface X by the parametrization s(z,y) = (x,y, f(z,y)),
where f is a continuous function, then, we can optimize M (p) by an appropriate
optimization of N(g). We will refer to N(q) as the parametric mesh. The basic idea
consists on finding the position g in the feasible region of N(q) that makes M (p) be
an optimum local mesh. To do this, we search ideal elements in N(g) that become
equilateral in M(p). Let At € M(p) be a triangular element on X whose vertices
are given by yr = (zk, Yk, zk)T, (k =0,1,2) and tr be the reference triangle in P

(see Figure 1). If we choose yo as the translation vector, the affine map tr AT At is
y = Aru+y,, where A, is its Jacobian matrix, given by
X1 — X0 T2 — X0

Ar=| y1—% Y2—7% (2)
21 — 20 22 — 20
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Now, consider that ¢ € N(q) is the orthogonal projection of At on P. Then, the
vertices of ¢t are x, = Iy, = (atk,yk)T, (k =0,1,2), where IT = (el,eg)T is2x3

matrix of the affine map At LN t, being {e1,es,e3} the canonical basis in R® (the
associated projector from R3 to P, considered as a subspace of R?, is HTH). Taking

. A .
X as translation vector, the affine map tr Ltisx=Apu+ Xg, where Ap = ITA,

is its Jacobian matrix
AP:(CL‘l—CL‘O 1‘2—1‘0) (3)
Y1 —%Yo Y2 — Yo

Therefore, the 3 x 2 matrix of the affine map ¢ L At is
T = A-Ap' (4)

Let Vi be the subspace spanned by the column vectors of A and let 7 be the plane
defined by V; and the point yo. Our goal is to find the ideal triangle t; C P, moving
q on P, such that ¢; is mapped by T into an equilateral one, Aty C 7. In general, the
strict fulfillment of this requirement is only possible if N(g) is formed by a unique
triangle.

Due to rank(A,) = rank(Ap) = 2, it exists a unique factorization A = QR,
where Q is an orthogonal matrix (Q7Q = I) and R is an upper triangular one with
[R],; > 0 (i = 1,2). The columns of the 3 x 2 matrix @ define an orthonormal basis
{d1,q2} that spans V;, so we can see @ as the matrix of the affine map tr A Atgr
and R as the 2 x 2 Jacobian matrix of the affine map Aty 5 At (see Figure 1). As
tr We tp and @ is an orthogonal matrix that keeps the angles and norms of the

vectors, then tg Q) Atg and, therefore

QWg = AR 'Wg (5)

is the 3 x 2 Jacobian matrix of affine map tr e Atg. On the other hand, we
define on the plane m

S =RW," (6)
as the 2 x 2 weighted Jacobian matrix of the affine map that transforms the equi-

lateral triangle into the physical one, that is, Atg 5 At
We have chosen as ideal triangle in 7 the equilateral one (At; = Atg), then,

the Jacobian matrix W; of the affine map tgr s tr is calculated by imposing the

condition TW; = QWg, because tg gl Atr and tr A Atpg. Taking into account
(5), it yields
TW; = AR 'Wg (7)

and, from (4), we obtain
Wi =ApR 'Wg (8)

so we define on P the ideal-weighted Jacobian matrix of the affine map tr 514 as
S; = ApW;'. From (8) it results

S; = ApWg'RAR 9)
and, from (6)

Sr= ApW5 ' SWeAp' = ApW5's (ApW5') ' = SpSS5! (10)
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where Sgp = ApWg Lis the equilateral-weighted Jacobian matrix of the affine map

te g t. Finally, from (10), we obtain the next similarity transformation.
S =S558k (11)

Therefore, it can be said that the matrices S and St are similar.

Fig. 1. Local surface mesh M (p) and its associated parametric mesh N(q)

2.2 Optimization on the Parametric Space

It might be used S, as it is defined in (6), to construct the objective function and,
then, solve the optimization problem. Nevertheless, this procedure has important
disadvantages. First, the optimization of M (p), working on the true surface, would
require the imposition of the constraint p € Y. It would complicate the resolution
of the problem because, in many cases, X is not defined by a smooth function.
Moreover, when the local mesh M (p) is on a curved surface, each triangle is sited
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on a different plane and the objective function, constructed from S, lacks barriers.
It is impossible to define a feasible region in the same way as it was done at the
beginning of this section. Indeed, all the positions of the free node, except those
that make det(S) = 0 for any triangle, produce correct triangulations of M (p).
However, for many purposes as, for example, to construct a 3-D mesh from the
surface triangulation, there are unacceptable positions of the free node.

To overcome these difficulties we propose to carry out the optimization of M (p)
in an indirect way, working on N(g). With this approach the movement of the free
node will be restricted to the feasible region of N(g), which avoids to construct
unacceptable surface triangulations. It all will be carried out using an approximate
version of the similarity transformation given in (11).

Let us consider that x = (x,y)T is the position vector of the free node ¢, sited
on the plane P. If we suppose that Y is parametrized by s(z,y) = (z,y, f(z,v)),
then, the position of the free node p on the surface is given by y = (z,y, f(z,y))” =
(x, ()"

Note that Sg = ApWj "' only depends on x because W is constant and Ap is
a function of x. Besides, St = APWI_1 depends on y, due to Wr = APRAWE7 and
R is a function of y. Thus, we have Sg (x) and S; (y). We shall optimize the local
mesh M (p) by an iterative procedure maintaining constant W; (y) in each step. To
do this, at the first step, we fix W7 (y) to its initial value, W) = Wi(y"), where
y" is given by the initial position of p. So, if we define S? (x) = Ap (x) (W)™, we
approximate the similarity transformation (11) as

S (x) = Sg' (x) 7 (x) Sk (x) (12)

Now, the construction of the objective function is carried out in a standard way,
but using S° instead of S. So, we obtain the objective function for a given triangle
AtCm

50 (x)|?

7’ (x) 200 (%) (13)

where 0° (x) = det(S° (x)).

With this approach the optimization of the local mesh M (p) is transformed
into a two-dimensional problem without constraints, defined on N(q), and, there-
fore, it can be solved with low computational cost. Furthermore, if we write W7 as
AL (RY)™'Wg, where A = Ap (xo) and R = R (yo)7 it is straightforward to show
that S° can be simplified as

S° (x) = R® (4%) 7" Sk (x) (14)

and our objective function for the local mesh is

1
M n
|55, () = [Z ()" (x)] (15)
m=1
Let now analyze the behavior of the objective function when the free node crosses
the boundary of the feasible region. If we denote ap = det (Ap), a% = det (A(I);),
p’ = det (R°), wg = det (Wg) and taking into account (14), we can write ¢° =
P° (0493)71 ozpwgl. Note that p°, a%, and wgp are constants, so n° has a singularity
when ap = 0, that is, when ¢ is placed on the boundary of the feasible region of
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N(q). This singularity determines a barrier in the objective function that prevents
the optimization algorithm to take the free node outside this region. This barrier
does not appear if we use the exact weighted Jacobian matrix S, given in (6), due
to det (R) = Ri1Ra2 > 0.

Suppose that x* = %° is the minimizing point of (15). As this objective function
has been constructed by keeping y in its initial position, y°, then x! is only the
first approximation to our problem. This result is improved updating the objective
function at y' = (x', f(x'))T and, then, computing the new minimizing position,
x? = x'. This local optimization process is repeated, obtaining a sequence {xk}
of optimal points, until a convergence criteria is verified. We have experimentally
verified in numerous tests, involving continuous functions to define the surface X,
that this algorithm converges.

Let us consider P as an optimal projection plane (this aspect will be discussed
in next section). In order to prevent a loss of the details of the original geometry,
our optimization algorithm evaluates the difference of heights ([Az]) between the
centroid of the triangles of M (p) and the reference surface, every time a new position
x"* is calculated. If this distance exceeds a threshold, A(p), the movement of the node
is aborted and the previous position is stored. This threshold A(p) is established
attending to the size of the elements of M(p). In concrete, the algorithm evaluates
the average distance between the free node and the nodes connected to it, and takes
A(p) as percentage of this distance. Other possibility is to fix A(p) as a constant for
all local meshes. In the particular case in which we have an explicit representation
of the surface by a function f(x,y), A(p) can be established as a percentage of the
maximum difference of heights between the original surface and the initial mesh.

3 Search of the Optimal Projection Plane

The former procedure needs a plane in which the local mesh, M (p), is projected
conforming a valid mesh, N(q). If this plane exists it is not unique, because a small
rotation of the coordinate system produces another valid projection plane, that
is, another plane in which N(q) is valid. We have observed that the number of
iterations required by our procedure depends on the chosen plane. In general, this
number is less if the plane is well faced to M (p). We have to find the rotation of
reference system z,%, z such that the new ’,7 -plane, P’, is optimal with respect
to a suitable criterion.

We will denote N(q') as the projection of M(p) onto P’ and ¢’ the projection
of the physical triangle At € M(p) onto P'. Let A = (x] — x(,x5 — x() be the
matrix associated to the affine map that takes the reference element defined on P’
to t', then, the area of ' is given by 3 |a/p| where ap = det (A%).

M
Our goal is to find a coordinate system rotation such that > a/p ~ is maximum
m=1
satisfying the constraints a/p, = det (A%, ) > 0 for all the triangles of N(g'), that
is, m = 1,..., M. In [Ras2] a method to determine a projection plane is considered
but without the enforcement of these constraints.

According to Euler’s rotation theorem, any rotation may be described using
three angles. The so-called x-convention is the most common definition. In this
convention, the rotation is given by Euler angles (¢, 0, ¢), where the first rotation is
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by an angle ¢ € [0,2n] about the z-axis, the second is by an angle 6 € [0, 7] about
the z-axis, and the third is by an angle ¢ € [0, 27| about the z-axis (again).

Let ®&(¢,0,1) be the Euler’s rotation matrix such that y’ = @y, then, the Jaco-
bian matrix Ar = (y1—Yo,y2—Yo) associated to the triangle At of M (p), defined in
(2), can be spanned on the rotated coordinate system as Ay, = (y] —y0,¥2 —yo) =
®A,. Thus, the Jacobian matrix A’ is written as Ap = ITA,, = I[IPA,. With these
considerations it is easy to proof that the value of o’p is

a’p = det(ITPA,) = myq sin (¢) sin(0) + ma sin (0) cos (¢) + ms cos () (16)

where m; is the minor obtained by deleting the i-th row of A,. Note that equation
(16) only depends on ¢ and 6 angles, as was to be expected.

Although the above maximization problem can be solved taken into account the
constraints, we propose an unconstrained approach.

M
Let us consider, as a first attempt, the objective function > (o/Pm Y"1 (¢,0). The
m=1

minimization of this function tends to maximize the values of ap =~ and, due to the
barrier that appears when o/pm = 0 for some triangle of N(q’), the values of oszm are
maintained positive if the minimization algorithm starts at an interior point, that
is, a point (¢o,00) belonging to the set ¥ of angles (¢, 0) such that o/p (¢,0) > 0
for (m = 1,..., M). On the other hand, if any op < 0 the barrier prevents to reach
the required minimum. In next paragraph we propose a method to find an interior
point (¢o,00) of ¥ to be used as a starting point in the minimization algorithm.

Let G = [gm] be the 3 x M matrix formed by the vectors, g, normal to the
triangles of M (p). A solution of the inequality system (if it exists) G g > 0 provides
a direction [Wri], defined by vector g, such that all the triangles of M(p) can be
projected on a plane, normal to the unitary vector n :ﬁ, so that ozﬁ;m > 0 for (m =
1,...,M). Then, it only remains to find the angles ¢¢ and 6y in which the coordinate
system needs to be rotated to get the 2z’ axis to point in the direction of n. More
precisely, the angles ¢o and 6o are the solution of the equation &7 (¢0,60,0)e3 = n,
where ez = (0,0, l)T. If the inequality system has not solution, then, there is not
any valid projection plane for this local mesh, against the premise done in section
2.1. In this case, the local optimization procedure maintains the free node p at its
initial position.

We have observed that the previous objective function has computational diffi-
culties as the optimization algorithms use discrete steps to search the optimal point.
A step leading outside the region ¥ may indicate a decrease in the value of the ob-
jective function and take to a false solution. To overcome this problem we propose a
modification of the objective function in such a way that it will be regular all over R?
and its barrier will be "smoothed”. The modification consists of substituting ozﬁ;m
by h(ap,,), where h(«) is the positive and increasing function given by

h(a) = %(a + Va2 + 462) (17)

being the parameter § = h(0). The behavior of h(«a) in function of § parameter is
such that, }ir%h(a) =a, Ya > 0 and ;ir%h(a) =0, Yo < 0. The characteristics of h
function and its application in the context of mesh untangling and smoothing have
been studied in [Gar], [Esc]. Thus, the proposed objective function for searching the
projection plane is
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M

2.0 =3 W -

A crucial property is that the angles that minimize the original and modified
objective functions are nearly identical when § is small. Details about the determi-
nation of § value for 3-D triangulations can be found in [Esc].

4 Application to a Scanned Objects

In this section, the proposed technique is applied to smooth the meshes of scanned
objects. In particular, we have applied the optimization technique to a pair of meshes
obtained from http://www.cyberware.com/. The first object, Igea, (see Figure 2) has
67170 triangles and 33587 nodes. The second is a screwdriver (see Figure 5) with
27150 triangles and 13577 nodes. Note the poor quality of these original meshes in
several parts.

The projection plane for both surface triangulations have been chosen in terms
of the local mesh to be analyzed. We have used the objective function (1) with n = 2.

The initial value of the average quality for Igea is 0.794 (measured with the
quality metric based on the condition number [Fre]). The optimized mesh, after four
iterations of our optimization procedure, is shown in Figure 3. Its average quality
has been increased to 0.913. A more significant data is that average quality of the
worst 5000 triangles increases from 0.520 to 0.749. Figure 4 shows the quality curves
for initial and optimized meshes. These curves are obtained by sorting the elements
in increasing order of its quality.

The average quality for the screwdriver is increased from 0.822 to 0.920 in four
iterations, see Figure 6. The the worst 500 triangles increases its average quality
from 0.486 to 0.704. It is important to remark that the original geometry is almost
preserved in the optimization process, as it can be seen by comparing a detail of
these meshes in Figures 7 and 8. The quality curves for this application are shown
in Figure 9.

We have fixed A(p) for both applications as 10% of average distance between the
free node and the nodes connected to it. With this election, 208 nodes has not been
modified by the algorithm in the first iteration, 416 in the second, 432 in the third,
and 440 in the fourth one, for Igea application. For the screwdriver this number was
85 in the first iteration, 167 in the second, 187 in the third, and 193 in the fourth
one.

Finally, we remark that quality curves from the first to the fourth iteration are
very close. In particular, the algorithm only needs one iteration to reach an average
quality of 0.899 for Igea and 0.907 for the screwdriver.

5 Conclusions and Future Research

We have developed an algebraic method to optimize triangulations defined on sur-
faces. Its main characteristic is that the original problem is transformed into a fully
two-dimensional sequence of approximate problems on the parametric space. This
characteristic allows the optimization algorithm to deals with surfaces that only
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need to be continuous. Moreover, the barrier exhibited by the objective function in
the parametric space prevents the algorithm to construct unacceptable meshes.

We have also introduced a procedure to find an optimal projection plane (our
parametric space) based on the minimization of a suitable objective function. We
have observed that correct choice of this plane plays a relevant role.

The optimization process includes a control on the gap between the optimized
mesh and the reference surface that avoids to lose details of the original geometry.
In this work we have used a piecewise linear interpolation to define the reference
surface when the true surface is not known, but it would be also possible to use a
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Fig. 2. Original mesh of Igea obtained from http://www.cyberware.com/
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more regular interpolation, for example, the proposed in [Ras|. Likewise, it would
be possible to introduce a more sophisticated criterion for the gap control, by using
a local refinement/derefinement techniques, that takes into account the curvature

of the surface [Fre2|, [Ras|, [Vig], [Fre3].
In the present work we have only considered a sole objective function obtained

from an isotropic and area independent algebraic quality metric. Nevertheless, the
framework that establishes the algebraic quality measures [Knu] provides us the
possibility to construct anisotropic and area sensitive objective functions by using

a suitable metric.
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Fig. 4. Quality curves for the initial (dashed line) and optimized (solid line) meshes
for Igea

In future works we will use the present smoothing technique for improving the
mesh quality of the boundary of 3-D domain triangulations defined over complex
terrains [Mon]. A simultaneous smoothing and untangling procedure [Esc| could be
applied to inner nodes of the domain after. Authors have developed this tetrahedral
mesh generator for wind field simulation in realistic problems [Monl].

Acknowledgments

This work has been supported by the Spanish Government and FEDER, grant con-
tracts: REN2001-0925-C03-02/CLI and CGL2004-06171-C03-02/CLI.

[Knu] Knupp PM (2001) SIAM J Sci Comp 23:193-218

[Fre] Freitag LA, Knupp PM (2002) Int J Num Meth Eng 53:1377-1391

[Fre] Frey PJ, Borouchaki H (1999) Int J Num Meth Eng 45:101-118

[Gar] Garimella RV, Shaskov MJ, Knupp PM (2004) Comp Meth Appl Mech Eng
9-11:913-928

[Fre2] Frey PJ, Borouchaki H (1998) Comp Vis Sci 1:113-121

[Ras] Rassineux A, Villon P, Savignat JM, Stab O (2000) Int J Num Meth Eng
49:31-49

[Vig] Vigo M, Pla N, Brunet P (1999) Comp Aid Geom Des 16:107-126



Quality Improvement of Surface Triangulations 481

Fig. 5. Original mesh of a screwdriver from hitp://www.cyberware.com/

[Fre3] Frey PJ, Borouchaki H (2003) Int J Num Meth Eng 58:227-245

[Knul] Knupp PM (2000) Int J Num Meth Eng 48:401-420

[Knu2] Knupp PM (2000) Int J Num Meth Eng 48:1165-1185

[Ras2] Rassineux A, Britkopf P, Villon P (2003) Int J Num Meth Eng 57:371-389

[Wri] Wright S.J. (1997) Primal-dual interior-point methods. SIAM, Philadelphia.

[Gar] Garanzha VA, Kaporin IE (1999) Comp Math Math Phys 39:1426-1440

[Esc] Escobar JM, Rodriguez E, Montenegro R, Montero G, Gonzélez-Yuste JM
(2003) Comp Meth Appl Mech Eng 192:2775-2787

[Mon] Montenegro R, Montero G, Escobar JM, Rodriguez E, Gonzalez-Yuste JM
(2002) Lect N Comp Sci 2329:335-344

[Monl] Montero G, Rodriguez E, Montenegro R, Escobar JM, Gonzélez-Yuste JM
(2005) Adv Eng Soft 36:3-10



R. Montenegro, J.M. Escobar, G. Montero and E. Rodriguez

482

Fig. 6. Optimized mesh of the screwdriver after four iterations
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7. Detail of the original mesh of the screwdriver end
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Quality Improvement of Surface Triangulations
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Fig. 8. Detail of the optimized mesh of the screwdriver after four iterations
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Fig. 9. Quality curves for the initial (dashed line) and optimized (solid line) meshes
for the screwdriver



