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Summary. Having reliable finite element (FE) meshes is one of the basics of re-
liable FE simulations. As development times i.e. in the car industry are expected
to decrease, engineers need to edit and optimise FE meshes without access to the
underlying CAD geometry. If meshes are not only locally effected by the editing op-
eration, simple mesh optimisations such as mesh relaxation or local remeshing are
not sufficient to make the mesh suitable for numerical simulation again and global
remeshing is needed. To avoid the traditionally used time-consuming remeshing
strategy, we developed a tool to remesh an FE surface model — taking into account
the needs for good FE meshes — via volumes. We first voxelise the surface and then
generate a new quad mesh via isosurface extraction and subsequent mesh optimisa-
tion. This method provides the opportunity to directly couple editing operations on
the volumetrical representation with the remeshing procedure.
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1 Introduction

Virtual prototyping more and more replaces real mock-ups and experiments in in-
dustrial product development such as in automotive industry. The fast increasing
processing power of modern computers together with more and more efficient algo-
rithms allows to calculate complex non-linear and highly dynamic processes such as
crash worthiness simulations within few days. So, expensive car prototypes are in-
creasingly replaced by virtual simulations based on Finite Element Analysis (FEA).

Usually the car parts are designed as analytical surfaces using computer aided
design (CAD) and have to be transformed into an FE mesh for simulations. For this
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Fig. 1. Surface in different representations: (a) original FE mesh representation,
(b) volumetric representation and (c¢) reconstructed FE mesh representation

purpose several meshing algorithms have been developed (e.g. [BS91, ZZHW91]), but
most of them are tailored to fit a specific kind of simulation and to preserve a special
surface property. So, a lot of expert knowledge and manual intervention is still needed
to adapt those meshes to fit the prerequisites of a reliable numerical simulation. A
recent improvement in simulation algorithms made it possible to mesh each car
component individually, which was a huge step forward in giving the engineer more
flexible tools and to speed up the development cycle. Now single car parts can be
exchanged or varied without the necessity of remeshing the whole car model. This
fact induced the desire for having tools to directly manipulate and edit the surfaces
in the FE mesh representation(e.g. [BREO04]) instead of going back to the CAD
department for each change during the development. If the changes in the surface
only affect a small region in the mesh, the mesh properties required for simulation
can be regained by local optimisation as relaxation or — in more serious cases — local
remeshing. But if the mesh gets deformed too much during editing or manipulation,
these repairing mechanisms will be insufficient and remeshing is needed. To avoid
the frequent and thus time-consuming way back to CAD, the engineers need a fast
method to generate new meshes suitable for numerical simulation.

Due to the potential possibility to directly combine this necessary remeshing
with coarse-scale modifications of the surface in an intermediate step, we decided
for a volume-based approach to remeshing (see Fig. 1): the surface is voxelised as
described in Sect. 3, then reconstructed by isosurface extraction taking into account
the desired properties of FE meshes (see Sect. 4). As isosurface extraction usually
leads to triangle meshes, but quad meshes are needed for our structural mechanics
simulations, the triangle mesh is converted to a quad dominated mesh in a subse-
quent processing step described in Sect. 4.2.

FE models are not very tolerant concerning mesh deformations, whereas gener-
ating quad meshes on curved surfaces always introduces warping: the problem that
the vertices of a quad are not bound to lie on a common plane as vertices of a triangle
inevitably do. But warping, which also can arise in the original mesh resulting from
CAD, leads to huge problems during the numerical simulation and must be elimi-
nated from the mesh before the simulation. This process is described in Sect. 5.1 in
more detail. Additionally some quads in the mesh might be oriented diagonally to
the other quads (see Fig. 9(a)) which may also lead to numerical problems during
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simulation. Thus, these quads need to be detected and removed by either splitting
them into triangles or merging and re-splitting them together with neighbouring
elements. This approach is explained in Sect. 5.2.

The paper presents some previous work in the following section and results and
some conclusions in Sect. 6, as well as an outlook to enhancements planned for future
work.

2 Related Work

There is a lot of work and publications about voxelisation, often bound to special
needs of the application they were developed for. An algorithm fitting all interests at
the same time does not exist. Especially for closed surfaces and real volumes many
sometimes simple but powerful algorithms have been invented — such as binary
volumes (e.g. [Kau87, HYFK98]) or distance volumes (e.g. [Gib98, VKK'03]) —
some also taking into account special requirements like accuracy of surface details
[Sra01, HLC'01]. A nice overview of the voxelisation literature is given in [COK95].

In our case we do not have closed surfaces but bounded ones, which leads to
new problems: how to handle the boundary, how to treat distances measured to
the boundary. Using binary volumes leads to problems with thin surfaces and the
surface’s thickness would have to be increased to get a hole-free voxelisation. Ad-
ditionally it would lead to double surfaces during reconstruction, as the surface
between ”inside” and ”outside” would be extracted — which is of no use for our
purpose. So we decided for signed distance volumes, to be able to extract the zero
isosurface as a single surface. Another approach, presented in [KBSS01], is to di-
rectly save the points where voxel and surface intersect each other instead of storing
a scalar distance value per voxel.

Consequently, there is also a lot of related work in the field of isosurface extrac-
tion from volume data. Starting from the fundamental Marching Cubes algorithm
[LC87], many variants of this method exist: the algorithm has been simplified to
Discretized Marching Cubes [MSS94] where each intersection of the marching cube
with the isosurface is set to the middle of the respective cube’s edge. In addition,
many extensions and improvements have been applied to the Marching Cubes al-
gorithm in order to solve ambiguous cases and maintain topological properties (e.g.
[Che95] and [LLVTO03]), geometrical properties like sharp edges (e.g. [KBSSO01]), or
to get smoother surfaces (e.g. [LB03]).

Marching Cubes and its derivatives usually generate triangle meshes. In FE
simulations we need quad meshes or at least quad dominated meshes with only few
triangles since triangle meshes lead to unstable numerical simulations in FEA. So
we have to extract a quad mesh from the volume, similar as in the Dual Marching
Cubes [Nie04] where the dual grid is used to enhance the triangle mesh. Generating a
mesh dual to the one generated by a Marching Cubes variant leads to new problems
on bounded surfaces as data might be lost at the boundary (see Sect. 4.2).

In the following sections we describe how we combined the existing body of
knowledge to make it available in the context of Finite Elements. By implementing
our algorithms into the commercially available preprocessing tool scFEMod [sci04]
we made this functionality available for productive use in the CAE departments of
major German car manufacturers.
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3 Voxelisation of the FE Mesh

Generating a volume representation of the FE mesh is done by distance calculation.
The voxel size (uniform in each direction respectively) depends on the elements’
globally minimal edge length to take fine surface features into account. When the
volume dimensions are calculated, the shortest Euclidean distance to the FE mesh
is computed for each voxel. If the distance to the surface is larger than a specified
threshold (e.g. more than the doubled diagonal length of the voxels), the voxel value
is set to 255, representing an ”invalid” value that should not be taken into account
for volume rendering or later isosurface extraction.

The point P on the surface having shortest distance to the voxel might have
different properties depending on its location in respect to the bounded mesh (see
Fig. 2): in the ideal case P lies inside an element (Fig. 2(a)) and the distance vector
v is perpendicular to the element. Another possibility is, that the point P lies on
an element edge or vertex being part of the surface boundary (see Fig. 2(b)). In
this case the distance stored in the voxel would lead to wrong assumptions during
volume rendering or surface reconstruction.

(a) Closest point on surface lies inside (b) Closest point on surface lies on
an element mesh boundary

Fig. 2. Two possible locations of the closest point on the surface in respect to the
voxel’s position

In order to avoid these problems voxels are skipped and their value is set to
invalid if the angle enclosed by the corresponding distance vector v and the normal
of the element the edge belongs to is larger than a specified threshold (v - N > ¢).
In the other cases P lies on an inner edge or an inner vertex and the distance vector
is compared to the average of the neighbouring elements’ normals in the same way.

If a shortest distance is measured from the same voxel to an edge as well as to
an element, the element gets favoured (see example in Fig. 3).

In Fig. 4 an example of a voxelised FE mesh is given, showing that this method
preserves surface features such as small holes.

4 Surface Reconstruction

In order to retrieve a meshed surface, an isosurface has to be extracted from the
volume. The Marching Cubes algorithm computes for each cube the zero points
along the edges by linear interpolation between the values at the cell’s vertices. If
one vertex value is negative and one positive, there has to be a zero point on this edge
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Fig. 3. In case a shortest distance from one voxel is measured to an edge (P;) and
to an element (P:), the element gets favoured.

Fig. 4. Volumetric representation of the surface — preserving small surface features

which means an intersection of the cube with the surface. As we use signed distance
fields to generate the volume, the zero isosurface is the surface we are looking for.

4.1 Isosurface Extraction

The classical Marching Cubes look-up table contains some ambiguous configurations
that may lead to topological problems like holes in the mesh. If there are e.g. only
two negative values on the vertices connected by an inner diagonal of the cube, the
surface inside the cube may separate or connect these two vertices as depicted in
Fig. 5.

(a) Surface separates (b) Surface connects
marked vertices marked vertices

Fig. 5. Two possible triangulations with the same configuration of values on the
vertices
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Choosing the wrong configuration would lead to problems when connecting the
generated triangles to the ones of the neighbouring cubes, possibly generating cracks
in the triangle mesh. The development of enhanced look-up tables taking into ac-
count and solving these ambiguities, e.g. in [Che95], allowed algorithms — such as
[LLVTO03] — preserving the original topology and getting rid of unintentional holes
in the mesh. This algorithm, an enhanced version of the Marching Cubes 33 [Che95],
not only takes into account the vertices’ values, but also interpolates values at inner
points or on surfaces to distinguish between configurations. This is important to
ensure topologically correctness. To provide consistent triangulations neighbouring
configurations have to be additionally considered.

As avoiding cracks in the mesh is among the most important prerequisites for
FEA, we decided to base our meshing method on this algorithm: Using the look-up
table of [LLVTO03] we determine the connectivity and so the triangulation within
each cube. But as a triangle mesh is not suitable for FE applications, we have to
convert the obtained mesh into a quad mesh.

4.2 Quad Mesh Generation

In [Nie0O4] a triangle mesh is smoothed by applying the dual operator to the mesh
two times. Applying this duality only once, we automatically obtain a quad mesh:
the triangles are always constructed within a cube and connected to the triangles
inside neighbouring cubes.

As a first step we consider only cubes of the inner surface, thus not containing
triangles of the surface’s boundary. Imagine four cubes connected in one conjoint
edge. Connecting the centres of these four cubes leads to a square. This method
can now be applied to the triangulation obtained as described before. Considering

Fig. 6. Construction of a quad element dual to the triangle mesh generated by
Marching Cubes

connected triangles within one cube as a single polygon, we can connect the centre of
the polygon (Q;) with the ones of the neighbouring cubes, as depicted in Fig. 6, and
get quads instead of triangles. Even if there is more than one polygon within a cube,
the statement holds for each of these surfaces respectively. The only problems arise
on the surface boundary as the quad mesh is slightly smaller than the triangle mesh,
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due to the duality construction. To avoid that and to retain the original surface
boundary, polygons are added and subsequently split or merged to quads. This
method is a trade-off between keeping the shape of boundary lines and exchanging
triangles in boundary corners by quads (see Fig. 7).

(a) Original mesh on (b) Reconstructed mesh on
boundary boundary

Fig. 7. Boundary reconstruction

4.3 Feature Line Preservation

One of the main problems with isosurface extraction is the fact that sharp feature
lines are being wiped out. To avoid this we explicitly treat these feature lines. When
generating the volume representation, feature lines are detected depending on the
angle between two neighbouring elements and the voxels crossed by the lines are
marked. Since we use the dual grid described in Sec. 4.2 our new vertices are located
in the centre of the polygon extracted by Marching Cubes within each voxel. So, if
the voxel is one of those originally crossed by a feature line, we move the new voxel
to the closest point on the extracted feature line. If there is a feature point within
the voxel, e.g. a corner in the surface boundary, the new vertex is moved to this
point. As the vertices are being moved only slightly within the voxel the shape of
the elements is only little affected but the feature lines are well preserved (see Fig.
8).

With these methods applied the resulting mesh already looks pretty appropri-
ate for FE simulation. Nonetheless the quad mesh still lacks some enhancements —
described in the following section — to fulfil the demands of Finite Element Analysis.

5 Quad Mesh Optimisation

Elements in FE meshes have to satisfy special properties to be able to be used for
simulation. The mesh should consist of quads shaped as close to squares as possible,
oriented all in the same direction (see Fig. 9). If needed few triangles can be included.
Extreme angles as well as warping influence the simulation speed and result. Since
the mesh obtained by the algorithm described above might lack these prerequisites
in some elements, these properties have to be checked.
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(a) Surface without fea- (b) Surface with preserved
ture preservation features

Fig. 8. Preservation of surface feature lines

- | I
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(a) Accidently oriented ele- (b) Well oriented elements
ments

Fig. 9. Orientation of quads in the FE mesh

5.1 Warping Removal

Compared to triangle meshes quad meshes bear the risk of warping. This might
occur already during construction or as a result of manipulations of the elements.

Due to the quad construction described in Sect. 4.2 our mesh usually is warped
in some elements. To make these elements suitable for simulation again they have
to be detected and unwarped. Our meshing tool allows to mark warped elements
by colour as seen in Fig. 10(a). To detect warping each quad is divided into two
triangles the normals N; and N2 of which get compared. If the angle is above a
specified threshold, the diagonal is marked in dark/red, if it is below the threshold
but the element still warped this is marked in light/yellow.

Both possible triangulations of a quad are examined and the direction corre-
sponding to the wider angle between the two normals is the one considered further
on during unwarping. To remove warping, all elements are analysed and if the angle
exceeds the threshold the element is marked to be unwarped. Using the average of
the two normals the linear smoothing plane through the middle point P of the four
vertices v; is calculated:

niz +noy +ngz —d =0 (1)
with N = (nl,ng,ng)T = N; + Na, d = > n;p; and P = (p1,p2,p3) = >_ v;. Then
the vertices’ new coordinates are calculated projecting them vertices onto this plane

vi=v;+tN (2)
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e o
(a) Original mesh with  (b) Mesh after unwarp-  (c) Euclidean distance be-
warping ing severely warped ele- tween warped and un-
ments warped surface

Fig. 10. (a) Highlighting and (b) unwarping of warped elements: slight warping
coloured light/yellow, severe warping marked dark/red. (¢) Comparison between
warped mesh and unwarped mesh using distance mapping. Euclidean distance is
colour-coded: yellow/light < 0.01 mm to red/dark up to 1 mm

with t = (d — N - v;)/||N]|.
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(a) Warped quad (b) Unwarped quad

Fig. 11. Warping removal: Vertices of warped quads are projected on the linear
smoothing plane

As neighbouring elements get affected by this treatment, the new coordinates
are set no earlier than all elements are checked and the new coordinates are the
average of the calculated coordinates for each vertex respectively. This calculation
is repeated iteratively until no element is warped more than allowed by the specified
angle threshold.

This algorithm is also useful to remove warping in the original mesh as well as
after local editing operations (see [BREO04]) as the shape of the surface is only very
little affected by unwarping the elements (see Fig. 10(c)). Fixing warped elements
may slightly change the feature line’s run but they are not wiped out since they do
not run through the elements but along element edges.

5.2 Fixing Quad Orientation

The mesh constructed using the dual grid approach described in Sect. 4.2 usually
contains rhombic shaped quads or quads oriented diagonally to its neighbours as
depicted in Fig. 12. These artefacts lead to problems during numerical simulation
and therefore should be removed.
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(a) Reconstructed mesh with rhombic quads

(b) Reconstructed mesh with corrected quads

(c) Reconstructed mesh with corrected quads and mesh relaxation

Fig. 12. Removing of rhombic quads

As can be seen in the picture, the vertices of a rhombic quad have a different
degree than the ones around it: the vertices within the regular grid have even degree,
the ones part of the rhombus have odd degree. Taking that fact as a reference to
detect these quads, they can be removed by contracting the diagonal shared by
the vertices with lower degree to one single vertex (see Fig. 12(b)). This leads to
four equally oriented quads. To further enhance the quads’ shape and equalise the
elements’ size and inner angles, relaxation as described in [BRE04] can be applied
to the mesh additionally (see Fig. 12(c)).
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6 Results and Conclusion

Modifying and editing FE meshes is part of daily engineering work. As the quality
of Finite Element Analysis simulations is very sensitive to the FE mesh’s quality,
one important aim is to provide tools that fit the specific needs of Finite Elements.
If the FE mesh is edited locally, it is usually only little deformed and minimal in-
terfering mechanisms like mesh relaxation or local remeshing are sufficient to retain
the prerequisites for the simulation. On the other hand, especially in the early de-
sign stage sometimes larger scaled modifications of the surfaces are desired and the
mechanisms mentioned above will not be sufficient to make the mesh suitable for
numerical simulation again. In this case new approaches are needed. In this paper
we presented a remeshing method via volumetric representations. We first convert
the surface defined by an FE mesh to a signed distance volume. From this volume we
reconstruct the surface by isosurface extraction. To retrieve the required quad mesh
we apply a duality algorithm to extract a quad mesh out of the modified March-
ing Cubes algorithm. This resulting mesh is enhanced by removing badly oriented
quads, by fixing warped elements and by mesh relaxation (see Fig. 12).

Considering a mesh consisting of some 2300 nodes the calculation of the distance
volume as well as the reconstruction takes only a few seconds on a P4 system with
2.8 GHz. The additional mesh enhancement methods work instantly.

The presented method implies the capability to combine the intermediate volu-
metric representation with the editing operation itself, which is planned for future
work. The described procedures are ongoing work. Therefore, the resulting surfaces
still show problems we are about to solve, e.g. the reconstruction of small intended
holes in the surface, sometimes only of the size of one element in the original mesh.
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