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ABSTRACT

Riemannian metric tensors are used to control the adaptation of meshes for finite element and finite volume computations. To study
the numerous metric construction and manipulation techniques, a new method has been developed to visualize two-dimensional
metrics without interference from any adaptation algorithm. This method traces a network of orthogonal tensor lines to form a
pseudo-mesh visually close to a perfectly adapted mesh but without many of its constraints. Although the treatment of isotropic
metrics could be improved, both analytical and solution-based metrics show the effectiveness and usefulness of the present method.
Possible applications to adaptive quadrilateral and hexahedral mesh generation are also discussed.

Keywords: tensor visualization, mesh adaptation, Riemannian metric, tensor line, hyperstreamline.

1. INTRODUCTION

Symmetric second-order tensor data frequently arises from
medical and engineering applications. Classical examples
are diffusion tensors from Magnetic Resonance Imaging
(MRI) and stress tensors from solid mechanics. Lately,
Riemannian metric tensors have also been used to control
mesh adaptation for finite element and finite volume com-
putations [1–3]. Numerous methods have been developed
to construct and manipulate those metrics. For example,
the Hessian of a computed field can be used to construct a
metric tensor for solution-adaptive remeshing. When no so-
lution is yet available, metrics based on the computational
domain geometry can be used instead [4]. User specifica-
tions can also be formulated as metric tensors and combined
with solution-based and geometric metrics. The resulting
tensors may, however, prescribe abrupt size variations that
a proper conformal mesh cannot possibly reproduce. Post-
processing methods have thus been proposed to smooth such
metrics and improve mesh gradation [5, 6]. Many variations
exist on these metric construction and manipulation meth-
ods. There are indeed several alternatives to compute the
solution derivatives, particularly at domain boundaries, and
form the Hessian matrix. Similarly, the geometric features of
the domain, such as its local thickness and curvature, may be
combined differently than in [4] to obtain a geometric met-
ric. The interpolation itself of a discrete metric can also vary
to favor bigger or smaller elements for example [7]. Metric
visualization would be an invaluable tool to study the impact
of these different alternatives. Although a perfectly adapted
mesh is indeed an indirect visualization of the target metric,
it is biased by the adaptation algorithm. Furthermore, such
an a posteriori approach cannot be used to evaluate before-
hand the feasibility of a given metric, i.e., whether it is theo-
retically possible or not to generate a proper mesh perfectly

adapted to this metric. A more direct visualization method is
thus needed.
Compared to scalars and vectors, tensor fields are still chal-
lenging to visualize. Tensors are matrix valued functions and
their individual components can be visualized separately as
scalars. However, it is difficult to gain insight on the struc-
ture of the field from multiple scalar plots. Furthermore, the
matrix components are strongly dependent on the orienta-
tion of the reference coordinate system. A better decompo-
sition is based on the tensor’s eigensystem. For example,
iconic methods plot, at discrete locations, elliptical or ellip-
soidal glyphs reflecting the local magnitude of the eigenval-
ues as well as the orientation of the corresponding eigenvec-
tors. Such a discontinuous information is, however, difficult
to interpolate visually in order to assess the global structure
of the tensor field. An alternative is to use tensor lines [8]
or hyperstreamlines [9], i.e., streamline equivalents but tan-
gent to the tensor’s eigenvector fields. To avoid cluttering
the domain, a small and carefully chosen set of tensor lines
originating from special degenerate points can be used to
extract a topological skeleton of the tensor field [10]. No
single method, however, has yet covered all the aspects of
the complex nature of tensor fields and new methods appear
regularly. Some simulate the deformation of a continuous
medium under stress [11], others use direct volume render-
ing techniques [12] for example. Choosing the best one is
context dependent.
For metrics, a mesh-like approach is probably the most intu-
itive. That is why the proposed method saturates the domain
with tensor lines to mimic a perfectly adapted mesh but with-
out many of its constraints like continuity and conformity.
Such a pseudo-mesh is not biased by any adaptation algo-
rithm and can be constructed even if a proper mesh cannot.
The tensor line placement technique is very close to the one



used by Alliez et al. [13] for their polygonal surface remesh-
ing algorithm. However, instead of a surface curvature ten-
sor, an adaptation metric tensor is considered. Furthermore,
tensor lines are spaced a unit metric distance apart like the
vertices in an adapted mesh.
After explaining how a metric tensor is used to adapt meshes,
the present paper describes the construction of a pseudo-
mesh to visualize such a metric. Analytical and solution-
based metrics illustrate the effectiveness and usefulness of
the method. Only two-dimensional metrics are considered
in the present study but future developments could include
a three-dimensional extension as well as the generation of
proper meshes from pseudo-meshes.

2. MESH ADAPTATION CONTROL METRICS

Accuracy of finite element and finite volume methods is
strongly dependent on the quality of the domain discretiza-
tion and, more precisely, its mesh. Control of the size,
stretching and orientation of the mesh elements is thus cru-
cial and can be done through mesh adaptation [1–3]. To de-
couple the actual adaptation algorithm from the target mesh
specifications, the process can be controlled using the metric
of the transformation that maps a perfect mesh element into
a unit square for quadrilateral meshes or a unit equilateral
triangle for simplicial ones.

2.1. Definition

In two dimensions, such a Riemannian metric tensor is de-
fined at every point of the domain by a 2 × 2 symmetric
positive-definite matrix M. This matrix can be factored as
the product of a rotation matrix R and a diagonal scaling
matrix Λ:

M = RΛR−1

=
(

~e1 ~e2

)

(

h−2
1 0
0 h−2

2

)(

~eT
1

~eT
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)

(1)

The columns of R are the eigenvectors of M and correspond
to two prescribed directions ~e1 and ~e2. Since R is orthog-
onal, its inverse R−1 is equal to the transposed matrix RT .
The diagonal terms of Λ are the eigenvalues of M and cor-
respond to the inverse of the squared target sizes h1 and h2

along the prescribed directions ~e1 and ~e2. This metric can
be interpreted as the transformation that maps an ellipse to a
unit radius circle (Fig. 1). The axes of this ellipse are given
by the eigenvectors of the matrix M and its eigenvalues are
reflected in the width and height of the ellipse.
Mesh adaptation algorithms perform local or global opera-

h2

2e
1e

h1

=1r

physical space control space

Figure 1: Geometric interpretation of a Riemannian metric.

tions to enforce the target size, stretching and orientation
prescribed by the control metric. An important parameter
used by those algorithms is the metric length between point
A and point B

lMAB =

∫ 1

0

√

(~pB − ~pA)TM(~pt) (~pB − ~pA) dt (2)

where ~p denotes a position vector and ~pt = ~pA+t (~pB−~pA).
It has been shown that the adaptation process is equivalent to
requiring all the mesh edges to have a unit metric length [2].
That is why perfectly adapted meshes are said to be unit
meshes.

2.2. Construction

To concentrate elements in critical regions, such control met-
rics can come from many sources. They can be given ana-
lytically or deduced from the geometric properties of the do-
main to mesh [4] for example, but are usually constructed
from a posteriori error analysis. The approximation error
between an exact solution u and a computed finite element
solution uh is difficult to estimate in general but, according
to Céa’s lemma, it is bounded by the interpolation error for
elliptic problems [14]. Practically, this relation holds for a
large class of problems and the interpolation error is com-
monly used as an error estimator for adaptive mesh genera-
tion. If the solution in an n-dimensional space is considered
as an hypersurface of dimension n + 1, such an error can be
geometrically interpreted as the gap between the surface and
its piecewise linear interpolation [7]. The local mesh density
necessary to achieve a prescribed error level is thus related
to the curvature of this surface and, therefore, the Hessian of
the solution, i.e., its second order derivatives

H =

(

∂2uh/∂x2 ∂2uh/∂x∂y
∂2uh/∂y∂x ∂2uh/∂y2

)

(3)

Since ∂2uh/∂x∂y = ∂2uh/∂y∂x, this matrix is symmetric
and can be decomposed as

H = RΛR−1
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where R is the Hessian’s eigenvector matrix and Λ is its
diagonal eigenvalue matrix. The corresponding adaptation
metric is

M = RΛ̃R−1

=
(
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)
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where λ̃i = min
(

max
(

C |λi| , h−2
max

)

, h−2
min

)

and the tar-

get size along ~ei is hi = λ̃
−1/2
i . Note also that hmax and

hmin are the maximum and minimum allowable target sizes
while the constant C controls the level of error and, conse-
quently, the final number of mesh elements.

3. VISUALIZATION METHOD

Streamlines are well known tools for visualizing the struc-
ture of a vector field. They are generalized to second order



tensor fields by tensor lines [8] or hyperstreamlines [9] tan-
gent to the tensor’s eigenvector fields. The present visual-
ization method forms a pseudo-mesh by tracing a set of ten-
sor lines for each eigenvector field and is very similar to the
polygonal surface remeshing technique proposed by Alliez
et al. [13]. However, instead of a curvature tensor, the metric
tensor is used to generate the two orthogonal sets of lines of
the pseudo-mesh. Nevertheless, if the solution to which the
mesh has to be adapted is considered as a hypersurface then
its Hessian, and thus the metric, is related to the curvature
of this surface. The present method is therefore a natural
extension of the algorithm presented by Alliez et al.

3.1. Tensor Field Decomposition

A two-dimensional metric tensor field can be decomposed
into a major and a minor eigenvector field. The major field
corresponds to the eigenvectors with the biggest eigenvalues
and the minor to the smallest ones. To compute those fields
from the metric M at every point of the domain, the deviator
D can be defined [15]

D = M− 1

2
tr(M) I =

(

α β
β −α

)

(6)

where tr(M) denotes the trace of M and I is the identity
matrix. The eigenvalues are then computed as

λ1,2 =
1

2
tr(M) ±

√

α2 + β2 (7)

while the eigenvectors are given by

~ei =
~e′i

||~e′i||
(8)

where
~e′1,2 =

(

β

−α ±
√

α2 + β2

)

and the subscripts 1 and 2 correspond to the major and minor
fields respectively, i.e., λ1 ≥ λ2.
Note that metrics constructed from a posteriori error analysis
are usually discrete and defined only at the vertices of the
computational mesh. Term-by-term linear interpolation is
used to compute M within each mesh element and D is then
computed from the interpolated M.
Furthermore, the tensor D represents the deviation of the
metric from isotropy, i.e., λ1 = λ2 which implies
α = β = 0. Isotropic tensors are degenerate cases
where no major or minor eigenvector can be distinguished.
They correspond to umbilic points for the curvature tensor
on a three-dimensional surface as noted by Alliez et al. [13].
Whether for curvature or metric tensors, isotropic regions
are important topological features of the tensor field. Spe-
cial tensor lines called separatrices originate from isolated
isotropic points and effectively divide the domain into non-
degenerate regions. The set of separatrices constitutes a
topological skeleton of the tensor field [10]. Locating such
isolated isotropic points for metrics linearly interpolated on
triangular meshes can be done by looping through all the
mesh elements and solving a 2 × 2 linear system. However,

metrics can also be isotropic along lines and in whole re-
gions. Although not generally prevalent, such regions are
problematic and must be detected because the present vi-
sualization method cannot be applied directly there. Sev-
eral techniques are proposed in Section 4 to deal with those
isotropic regions.

3.2. Tensor Line Integration

To plot lines tangent to the metric eigenvector fields, a tech-
nique analogous to streamline integration is used. Starting
with a seed point, the metric field is interrogated, the local
tensor is decomposed and the target eigenvector is used to
advance to a new point. A fourth order adaptive Runge-Kutta
integration scheme is used [16]. However, since eigenvec-
tors are actually determined modulo a non-zero scalar coef-
ficient, they only have direction but neither norm or orienta-
tion. Those quantities are needed for the integration process
and have to be somehow artificially specified. The norm v
used by Tricoche [15] is given by

v = α2 + β2 =
1

4
(λ1 − λ2)

2 (9)

However, the eigenvalues of the metric tensors used for mesh
adaptation vary widely as the squared inverse of the pre-
scribed target sizes and can cause numerical problems. That
is why the following normalized v was used instead

v =
(

λ1 − λ2

λ1 + λ2

)2

(10)

Furthermore an artificial orientation is chosen by assuming a
locally smooth variation of the eigenvector fields. Of the two
possible orientations at each new tensor line point, the one
forming the minimum angle θ with the orientation at the pre-
vious point is taken (Fig. 2). This smooth variation hypoth-
esis breaks down near degenerate points. Those isotropic
points constitute bifurcations where the eigenvectors are not
defined, i.e., they can take any direction. The artificial veloc-
ity norm v is, however, equal to zero in those regions and the
integration process has to be stopped anyway.

3.3. Pseudo-Mesh Generation

To gain insight on the structure of the metric field, the do-
main is saturated with tensor lines tangent to the two eigen-
vector fields. The distance between pairs of lines in the same

target ellipse

θ

Figure 2: Tensor line integration.



field should be as close as possible to a unit metric length.
The resulting network of lines constitute a pseudo-mesh that
is visually close to a perfectly adapted mesh, but without any
continuity or conformity constraints, and is thus easy to in-
terpret in a mesh generation context.
To achieve such a saturation, tensor lines are integrated from
seed points until they either are too close to existing lines
in the same eigenvector field, leave the domain or reach a
degenerate isotropic region. Note that, to make the final net-
work of tensor lines as close as possible to an actual mesh,
the proximity checks used to stop the integration are per-
formed only within a small angular range θp perpendicular
to the integrated line (Fig. 3). A value of 20 degrees for θp

was used in practice. Furthermore, an Alternating Digital
Tree (ADT) [17] is used to accelerate those proximity tests
and each eigenvector field is treated independently.
The seed generation and selection process, inspired by
streamline placement methods [18,19], is critical in ordering
the integration of the tensor lines. The first lines to be plot-
ted will indeed be the longest and thus should be the most
important. Any isolated degenerate point is inserted in an
initial set of seed points. By definition, an infinite number of
tensor lines go through those points but the most important
ones are the separatrices. Degenerate points can be classified
by their number of separatrices: wedges have only one sep-
aratrix while trisectors have three. For linear tensor fields,
the departing angle of those separatrices can be computed
using a third-order polynomial equation [15]. A tensor line
can theoretically be integrated for each pair of degenerate
point and separatrix angle. Once all the degenerate points
have been processed, potential seeds are placed alongside the
separatrices. For each integrated tensor line point, two seed
points are placed perpendicularly to the line at a distance ds

forbidden zone

θp

dp

θp

Figure 3: Proximity check.

ds

tensor line point

seed point

Figure 4: Seed point placement.

Algorithm 1 Tensor line saturation
input: set of potential seeds
repeat

choose a seed
integrate tensor line from this seed
discard old seeds too close to the new tensor line
add new seeds along the new tensor line

until no more potential seeds left

(Fig. 4). Using this initial set of non-degenerate potential
seed points, the domain is saturated with tensor lines using
Algorithm 1. Note that, for those non-degenerate seeds, two
half-lines are actually integrated: one along each possible
orientation of the local eigenvector. Once a new tensor line
has been integrated, the next seed to be processed is the one
that best fits the local requirements, i.e., unit metric distance
to the closest line in the same eigenvector field. Before ter-
minating the plotting process, the domain is interrogated at
random points. If saturation is not adequate locally, i.e., the
random point is farther away than a unit metric length to the
closest line in the same eigenvector field, then this point is
added to the set of seeds and Algorithm 1 is restarted. This
last check usually results in only a handful of new lines.
Finally note that dp (Fig. 3) and ds (Fig. 4) should corre-
spond to unit metric distances. Such a unit distance can be
approximated by the locally prescribed target size h in the
direction of the eigenvector field perpendicular to the consid-
ered one. However, to decrease fragmentation of the tensor
lines, dp was set to h/

√
2 and ds to

√
2h. Those values mir-

ror the refinement and coarsening thresholds used on mesh
edges in simplicial adaptation.

4. RESULTS AND DISCUSSION

The present visualization method has many advantages over
traditional iconic tensor visualization but also has some limi-
tations. To illustrate them, both analytical and solution-based
metrics are visualized using pseudo-meshes.

4.1. Analytical Metrics

The first case is an isotropic metric commonly used to test
mesh adaptation algorithms [2]

M = h−2 I (11)

where h is given by

h =











1 − 19y/40 if y ∈ [0, 2],

20(2y−9)/5 if y ∈ ]2, 4.5],

5(9−2y)/5 if y ∈ ]4.5, 7],
1/5 + (y − 7)4/20 if y ∈ ]7, 9].

However, as mentioned in Section 3, isotropic metrics are
considered degenerate and cannot be visualized by the present
method. That is why the definition of this metric has been
modified to make it slightly anisotropic as follows

M = h−2

(

1 0
0 (1 + ε)−2

)

(12)



Figure 5: Visualization of the isotropic metric given by Eq. (12). From left to right: iconic visualization; adapted triangular
mesh [20]; adapted quadrilateral mesh [21]; pseudo-mesh visualization.

A small ε does not disturb the structure of the field but en-
ables the algorithm to distinguish two different eigenvalues
and thus trace tensor lines. A value of 0.01, corresponding
to a one percent difference between the horizontal and ver-
tical target sizes, was used to generate the pseudo-mesh in
Fig. 5. Note that, since, by construction, a non-zero ε results
in a slightly anisotropic metric everywhere, no degenerate
isotropic point exists to initialize the tensor line saturation
process and random seeds were used instead. For compar-
ison, an iconic visualization as well as the final triangular
and quadrilateral adapted meshes corresponding to the same
metric, but with ε set to zero, are also presented. The iconic
visualization reflects the local target element size at discrete
points of the domain with the radius of its circles, but gives
little information on the structure of the metric field. The
triangular adapted mesh, on the other hand, conveys a more
continuous visual representation of the metric. The struc-
ture of the metric field reflected by this mesh agrees with
the pseudo-mesh visualization and confirms that introduc-
ing a small ε does not disturb too much this field. Such an
approach cannot be used systematically to remove isotropic
regions but, as shown in Section 4.2, those regions are rather
exceptional in practical solution-based metrics and can be
removed by appropriate smoothing.
Although an adapted mesh is a good way to visualize a met-
ric a posteriori, the quality of such a visualization is strongly
dependent on the performance of the adaptation algorithm.
Furthermore, metric visualization should be possible before
any adaptation to determine if a perfect unit mesh is even
feasible. Take for example the adapted quadrilateral mesh
presented in Fig. 5. This quadrilateral mesh does not com-
ply as well as the triangular mesh to the prescribed metric
because the particular cubical adaptation algorithm that was
used can only refine but neither coarsen nor reconnect un-
like the simplicial one [21]. A metric visualization through
such a mesh is thus biased by the adaptation algorithm. An
even more important problem is that a quadrilateral mesh
perfectly adapted to the metric given by Eq. (12) is impossi-
ble as can be seen in its pseudo-mesh visualization. The pre-
scribed size transitions can indeed only be achieved using
hanging nodes or non-quadrilateral elements. This demon-
strates the utility of the present visualization method to eval-
uate mesh adaptation control metrics.
Using pseudo-meshes has, however, some caveats. First of

all, although they are not biased by an adaptation algorithm,
they do not exactly reflect a perfect unit mesh in the metric
space. Approximations have indeed been introduced in the
metric length computation and tensor lines are not placed ex-
actly at unit metric distances. This results in some stray lines
here and there. However, this compromise is necessary to
minimize fragmentation of the lines and improve visual clues
on the overall structure of the tensor field. On average, the
spacing is close to unity and the pseudo-meshes are as close
to a unit mesh as possible. Furthermore, since a pseudo-
mesh does not have to comply to the usual constraints of a
mesh, such as conformity and continuity, it can be generated
even if a proper mesh cannot.
The second analytical case, presented in Fig. 6, is also a clas-
sic but an anisotropic one [2]. It will be used to illustrate
how the present visualization algorithm treats non-isolated
degenerate points and is given by

M =

(

h−2
1 0
0 h−2

2

)

(13)

where h1 and h2 are computed as follows

h1 =















1 − 19x/40 if x ∈ [0, 2],

20(2x−7)/3 if x ∈ ]2, 3.5],

5(7−2x)/3 if x ∈ ]3.5, 5],

1/5 + (x − 5)4/20 if x ∈ ]5, 7],

h2 =















1 − 19y/40 if y ∈ [0, 2],

20(2y−9)/5 if y ∈ ]2, 4.5],

5(9−2y)/5 if y ∈ ]4.5, 7],

1/5 + (y − 7)4/20 if y ∈ ]7, 9].

This metric presents a set of degenerate lines where h1 = h2

(Fig. 7). Locating those degenerate lines automatically is not
trivial. Furthermore, they are not tensor lines and thus can-
not be visualized directly by the present method. However,
since they actually stop tensor line integration, they abruptly
disrupt the tensor line network giving thereby visual clues on
their location as shown in Fig. 6. Again, an iconic visualiza-
tion and the final triangular and quadrilateral adapted meshes
are presented in addition to the pseudo-mesh visualization.
The elliptical icons reflect the prescribed size, stretching and



Figure 6: Visualization of the anisotropic metric given by Eq. (13). From left to right: iconic visualization; adapted triangular
mesh [20]; adapted quadrilateral mesh [21]; pseudo-mesh visualization.

orientation of the target mesh elements. Using the pseudo-
mesh as a reference, the quadrilateral mesh seems better
adapted to this particular metric than the triangular one. This
is due to the axis alignment of the prescribed metric topol-
ogy. The adapted quadrilateral mesh does not, however, give
any clue on the location of the degenerate isotropic lines.
Finally note that, again, no isolated degenerate point exists
for this metric and random seeds were used to initialize the
pseudo-mesh generation. Note also that, near the degenerate
lines, the major and minor eigenvalues switch and neighbor-
ing perpendicular lines belong to the same eigenvector field.
This defeats the perpendicular proximity checks and stops
line integration prematurely explaining some fragmentation
near those degenerate lines.

4.2. Solution-Based Metrics

Analytical metrics are somewhat artificial but allow the illus-
tration of the algorithm behavior in extreme conditions. The
following metrics are more representative of real world cases
and are constructed from the Hessian of a numerical solu-
tion. In those metrics, exactly isotropic regions are rare but

Figure 7: Degenerate isotropic lines for the metric given
by Eq. (13).

almost isotropic ones are not and isolated degenerate points
are a plenty. Furthermore, these degenerate regions tend to
be unstable and can be removed with a slight perturbation of
the metric field such as a small amount of smoothing.
Figure 8 plots iso-Mach lines for the steady laminar super-
sonic flow around a NACA 0012 airfoil for an angle of attack
of 10 degrees, a Reynolds number of 1000 and a Mach num-
ber of 2.0. This figure also presents the pseudo-mesh visual-
ization of the target metric constructed from the Hessian of
the solution Mach field as well as the resulting adapted tri-
angular mesh. The pseudo-mesh was generated on a slightly
smoothed metric to minimize degenerate regions. A simple
term-by-term Laplacian like operator was used on the back-
ground triangular mesh employed as a support medium for
the metric

Mn+1
i = Mn

i + ω

∑

j

(

Mn
j −Mn

i

)

/lij
∑

j
1/lij

(14)

where n is an iteration counter, j denotes all the vertices
sharing an edge with vertex i, lij is the Euclidean distance
between i and j while ω is a relaxation factor. To try to
avoid disturbing the metric as much as possible, only 10 it-
erations with a relaxation factor of 0.1 were performed. Fig-
ure 9 plots the pseudo-meshes generated for the original met-
ric and the smoothed one. Note the blank region upwind of
the detached bow shock. In a supersonic flow, there is little
variation in this region and the metric prescribes uniform ele-
ments of size hmax there. Such an isotropic region is impos-
sible to visualize directly with the present method. However,
this region is next to an anisotropic one and is very unstable.
A small amount of smoothing makes it anisotropic enough
for the algorithm to trace tensor lines.
However, care must be taken to avoid contaminating the met-
ric with too much smoothing. Figure 10 presents another ex-
ample of laminar compressible flow around a NACA 0012
airfoil but this time for unsteady transonic conditions, i.e.,
a zero angle of attack, a Reynolds number of 5000 and a
Mach number of 0.85. The same amount of smoothing was
used on the metric before generating its pseudo-mesh visu-
alization. Although the overall structure of the metric was
captured, some features in the smoothed metric as visualized
by the pseudo-mesh have been slightly washed out compared
to the corresponding adapted triangular mesh. Look in par-
ticular at the thickness of the shocks.



Figure 8: Steady laminar compressible flow around a NACA 0012 airfoil for an angle of attack of 10 degrees, a Reynolds
number of 1000 and a Mach number of 2.0. From left to right: iso-Mach lines; pseudo-mesh visualization of the metric;
adapted triangular mesh [22].

Figure 9: Steady laminar compressible flow around a NACA 0012 airfoil for an angle of attack of 10 degrees, a Reynolds
number of 1000 and a Mach number of 2.0. Pseudo-meshes for the original (left) and smoothed (right) metric.

To illustrate the effect of various levels of smoothing, the
next case is the portrait of German mathematician Bernhard
Riemann (1826–1866). The gray levels of the bitmap photo
in Fig. 11 are considered as the solution and their Hessian
is used to construct the target metric. Although such a met-
ric may appear to be nothing more than a toy application, it
could eventually be used for image processing. Figure 11
shows the pseudo-mesh visualization of this metric without
any smoothing as well as after 10 and 100 iterations with
a relaxation factor of 0.1. Before any smoothing, the met-
ric prescribes uniform elements of size hmax in white re-
gions without any significant variation of the gray levels.
These regions are isotropic and appear as blank patches in
the pseudo-mesh visualization because the tensor line inte-
gration algorithm cannot treat them. However, even outside
those patches, the tensor lines seem to twist and turn and
do not have any consistent directionality except along high-
contrast contours. This is due to the noise in the bitmap gray
levels that overwhelm the metric in the absence of strong
gradients. Those almost degenerate regions contain a lot of
isolated isotropic points, about 140 thousands for this par-
ticular case. When smoothing is applied, even only 10 iter-
ations, these unstable regions tend to disappear and the al-
most random directionality becomes more coherent. How-

ever, Laplacian smoothing erodes sharp features and, after
100 iterations, the details of the photo are washed out. Para-
doxically, smoothing reduces isotropy in almost degenerate
regions but also reduces anisotropy in neighboring regions.
In essence, it redistributes anisotropy and exposes a coherent
underlying directionality. This observation is not so much
interesting in the context of visualization as it is for adapted
mesh generation from a pseudo-mesh as mentioned in Sec-
tion 5. For visualization, the important thing to remember is
that smoothing should be kept to a bare minimum, i.e., just
enough to eliminate most degenerate regions but still retain
the structure of the metric field. How much is case depen-
dent but 10 iterations with a small relaxation factor around
0.1 seems adequate.
Note furthermore that adaptation algorithms also introduce
at least some level of smoothing as shown in the adapted
meshes of Fig. 11. Those algorithms indeed use refinement
and coarsening criteria based on metric length and, since this
length is integrated using Eq. (2), it indirectly smooths the ef-
fective metric field seen by those algorithms. Furthermore, a
regularization step is usually applied at the end of the adapta-
tion process and this step is little more than smoothing in the
metric space. Therefore, even if a small amount of smooth-



Figure 10: Unsteady laminar compressible flow around a NACA 0012 airfoil for a zero angle of attack, a Reynolds number
of 5000 and a Mach number of 0.85. From top to bottom: iso-Mach lines; pseudo-mesh visualization of the metric; adapted
triangular mesh.

ing is applied on the metric to generate the pseudo-mesh, the
resulting visualization is likely to be more faithful than the
corresponding adapted mesh, if one can be generated.

5. FUTURE DEVELOPMENTS

The main application of the present visualization method
is the study of metric manipulations such as smoothing or
interpolation for example. Metrics constructed with differ-
ent Hessian computation methods could also be visualized
and analyzed without any interference from adaptation algo-
rithms. Similarly, different boundary conditions could be vi-
sually explored for metrics constructed from turbulent flows
with special wall models.

There is, however, still room for improvement. For example,
the metric length could be more precisely computed during
the saturation process. To further decrease tensor line frag-
mentation, line integration could be stopped only if a new
line stays close to an existing one more than a given portion
of its length. The most important improvement, however,
would be to find a more efficient way to deal with isotropic
or almost isotropic regions. For example, the pseudo-mesh
generation for the unsmoothed metric constructed from the
portrait of Riemann (Fig. 11) required hours of CPU time
on an AMD Athlon running at 1.4 GHz while the other test
cases typically required only 5 to 10 minutes. This slow
down was due to the almost isotropic regions and the sheer
number of isolated isotropic points contained by those re-
gions, i.e., about 140 thousands. For each of those degen-



Figure 11: Portrait of German mathematician Bernhard Riemann (1826–1866). First row, from left to right: photo; adapted
triangular mesh [21]; adapted quadrilateral mesh [21]. Second row, from left to right: pseudo-mesh visualization of the metric
without any smoothing; metric after 10 smoothing iterations; metric after 100 smoothing iterations.

erate points, a number of separatrices had to be integrated
in an almost degenerate neighborhood. Those tensor lines
thus frequently changed direction and progressed at a very
slow speeds. Presently, the only solution is to apply a small
amount of smoothing on the metric. However, the limit to
impose on the amount of smoothing to preserve the features
of the metric is still case dependent and this issue should be
addressed in future developments.
Furthermore, a pseudo-mesh is very close to a perfectly
adapted unit mesh and it is thus tempting to try to gener-
ate a proper mesh from it, particularly an all-quadrilateral
one. Look, for example, at the pseudo-mesh boundary layer
in Fig. 12. As attractive as such a method may appear, the
visualizations presented in the previous section show, how-
ever, that not all metrics are suitable for the generation of an
all-quadrilateral mesh. Take for example the metric visual-
ized in Fig. 5. A conformal all-quadrilateral mesh is clearly
not feasible and either hanging nodes or non-quadrilateral

elements have to be introduced to perfectly match the pre-
scribed metric. This is due to the decoupling of the pre-
scribed mesh density from the topology of the target metric.
There is, indeed, no link between the direction of the ten-
sor lines and the prescribed target size. Based on the metric
topology alone, the perfect mesh should be a uniform Carte-
sian grid. However, to match the prescribed target sizes, this
grid should have varying density. If hanging nodes are to
be avoided, then this grid cannot be Cartesian and the tensor
lines should curve and bifurcate at degenerate points, act-
ing as sources and sinks, to transition between high and low
density regions. This is exactly what happens in the adapted
quadrilateral mesh. This suggests that some type continu-
ity constraint must be enforced on the metric field to ensure
the feasibility of an all-quadrilateral mesh. Adequate prepro-
cessing of target metrics should be explored in future devel-
opments.
Another obstacle for mesh generation from tensor lines is



Figure 12: Steady laminar compressible flow around a
NACA 0012 airfoil for an angle of attack of 10 degrees, a
Reynolds number of 1000 and a Mach number of 2.0. De-
tails of the pseudo-mesh of Fig. 8: leading edge (above)
and boundary layer (below).

their absence in degenerate regions and their random direc-
tionality in almost degenerate ones. As mentioned previ-
ously, a little smoothing can solve this problem. This is the
approach used by Alliez et al. [13] to generate a polygo-
nal surface mesh from a network of curvature tensor lines.
The resulting meshes are very attractive and are probably
the closest an automated method can get to what a human
expert, i.e., a computer graphics artist, would generate man-
ually. However, in the context of adapted mesh generation,
uncontrolled Laplacian smoothing erodes too much the main
features of the metric. Although it gives more consistent di-
rections to the tensor lines, it indeed results in more and more
uniform target sizes. Future developments should thus im-
prove the smoothing method to preserve the mesh clustering
prescribed by the metric.
However, even if, with adequate smoothing and preprocess-
ing of the metric, the generation of a proper adapted mesh
is feasible, its cost efficiency compared to simplicial adapta-
tion algorithms is uncertain. One way to improve this effi-
ciency is to amortize the pseudo-mesh construction by gen-
erating a coarse mesh and then uniformly splitting the result-
ing elements. An even more efficient approach would be to
use the pseudo-mesh to generate an adapted block decom-
position of the domain combined with a fast structured map-
ping method. Adaptively refining block decompositions has
shown that the quality of the results depends on the topol-
ogy of the initial blocks [23]. An extension of the present
work could eventually result in a method to generate such an
initial block decomposition adapted to not only the domain
geometry, as with a medial axis approach [24], but also to
the solution.
Finally, a three-dimensional extension of the method could
also be explored in future developments. In three dimen-
sions, the metric is a 3 × 3 symmetric positive-definite ma-
trix. The metric field can thus be decomposed into three
eigenvector fields and tensor surfaces are used instead of ten-
sor lines to form a pseudo-mesh. A tensor surface is perpen-

Figure 13: Pseudo-mesh visualization for a spherical met-
ric.

dicular to one of the eigenvector fields and tangent to the
other two. Figure 13 shows an early result for a spherical an-
alytical metric. As can be seen in this figure, occlusion prob-
lems may not be avoidable in three dimensions. However,
the main purpose of such an extension would be adapted hex-
dominant mesh generation and not visualization.

6. CONCLUSION

The proposed two-dimensional metric visualization method
extends the polygonal surface remeshing algorithm devel-
oped by Alliez et al. [13] to generate a network of tensor lines
visually close to a perfectly adapted mesh. Such a pseudo-
mesh visualization is intuitive to understand in a mesh gener-
ation context and is not biased by any adaptation algorithm.
Furthermore, it can be constructed even if a proper mesh can-
not. Both analytical and solution-based metrics have illus-
trated its advantages as well as its limitations, particularly
for isotropic metrics.
Pseudo-mesh visualization is an ideal tool to study metric
manipulation methods but could also be used to generate
proper all-quadrilateral meshes. However, not all metrics
can be used for such a purpose and a preprocessing method
should be developed to improve this potential. An adaptive
hex-dominant mesh generation method from pseudo-meshes
could also be interesting and justify the extension of the
present method to three dimensions.
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