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ABSTRACT

The paper presents an a priori procedure to control the element size and shape variation for meshing algorithms governed by
anisotropic sizing specifications. The field of desired element size and shape is represented by a background structure. The
procedure consists in replacing the initial field with a smoothed one that preserves anisotropic features and smaller element sizes.
The smoothness of the resulting field can be controlled by a prescribed threshold value γ0. Examples are included to show the
application in three dimensional anisotropic adaptive simulation, as well as the effect of γ0.
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1. INTRODUCTION

To reduce computation time and memory usage without sac-
rificing accuracy, in general a well-graded anisotropic mesh
is required [1, 2] (see figure 1 for an example). One of the
most important aspect to generating such a desired finite el-
ement mesh is specifying a desired element size and shape
in space [3, 4, 5, 6]. Sizing function and tensor field [7] have
been used to represent this desired shape and size distribu-
tion, and many authors have described approaches to spec-
ify the scalar or tensor field from various factors, e.g., error
norms [8, 9, 10, 2], surface curvature/proximity to other sur-
faces [7,11,12,13], user defined sources [14], etc. Emphasis
also has been given to the conformity criterion between the
field and the mesh [7, 15, 16]. The scalar/tensor field can
be considered as a transformation that defines a transformed
space (or Riemannian space), where all desired elements are
unitary and regular. However, one technical issue related to
the field specification and its conformity criterion remains
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not fully solved. In particular, due to the complexity and
variety in both geometry and physics, the defined field may
include abrupt change in size, shape or both, and the mesh
conforming to the field may be in poor element shape and
unlikely suitable for computation purpose. Figure 2 depicts
a simple two dimensional example to demonstrate this issue,
where a small element size is specified around the arc and
a large global mesh size is specified anywhere else. Figure
2(a) shows the mesh conforming to the specified mesh size.
Poor elements have to be created to connect short edges on
the arc with long interior edges. To obtain the mesh as illus-
trated in figure 2(b), either determining the sizing and grada-
tion during the meshing process [17, 18] (i.e., the field will
not be fully respected), or modifying the field by an a priori
procedure is required.

It has been common, especially in adaptive simulations, that
the tensor field is defined as a piecewise interpolation over
a background structure, which can be the mesh for previous
solution [6, 4], the evolving mesh [15], an octree [19] or etc.
General a priori mesh gradation control is possible for such
field representation since the interpolant or nodal size and
shape of the field can be locally modified based on neighbor-
ing size and shape information.



Figure 1: Graded anisotropic mesh (left) that captures
evolving discontinuous solution field (right) in solving a
four contact Riemann problem.

(a) (b)

Figure 2: Two dimensional example to illustrate the
need for mesh gradation control. (a) Poorly shaped
mesh conforming a given sizing function. (b) Graded
mesh conforming to a modified sizing function.

For scalar field and isotropic mesh gradation control, such
a priori procedures have been presented by Löhner [14, 20],
Borouchaki et al. [21] and Owen et al. [13]. Löhner utilizes
a tetrahedral background mesh to provide sizing information
to an advancing front tetrahedral mesher. To maintain a de-
sired growth ratio, the desired mesh size attached to vertices
of the background mesh is adaptively adjusted by applying
a geometric growth formula. The background mesh can be
refined if it can not well represent the mesh size field. In
the work by Borouchaki et al., two measures related to the
gradient of scalar fields are proposed, and mesh size values
attached to vertices of a background mesh are corrected to
limit the proposed measures. Both Löhner and Borouchaki
use piecewise linear interpolation. Owen et al. use a nat-
ural neighbor interpolation method to alleviate the abrupt
variation of the field. Borouchaki et al. have proposed a
simple anisotropic extension of their isotropic procedure by
considering one specific direction [21]. This procedure does
improve the mesh gradations, but tends to not maintain the
desired level of mesh anisotropy.

This paper discusses an a priori anisotropic mesh grada-
tion control procedure that explicitly accounts for preserving
anisotropy. It can be considered as a supplement to papers in
reference [22] and [2] related to anisotropic mesh size field
definition. In section 2, the notion and geometric signifi-
cance of a directional mesh gradation measure are given. In
section 3, we present a three dimensional a priori procedure
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Figure 3: Definition of directional mesh gradation mea-
sure γ. Mesh tensors are indicated by ellipses.

that preserves element size and anisotropy. Section 4 pro-
vides three dimensional example meshes to show how the a
priori mesh gradation control is accomplished.

2. A DIRECTIONAL MESH SIZE
GRADATION MEASURE

In this section, we give an anisotropic mesh gradation mea-
sure that can evaluate the smoothness quality of a given mesh
tensor field.

Definition Let Mi(i = p, q) be the 2 × 2 or 3 × 3 symmet-
ric positive definite tensor specifying the desired mesh size
and shape at point P and Q, and ei be a unitary direction
vector associated with Mi (see figure 3). The mesh size gra-
dation measure related to point P and Q between direction
pair (ep,eq) is:

γ(ep, eq) = e
|hp(ep)−hq(eq )|

Lpq (1)

where Lpq is the distance between the two points, and
hi(e

i) (i = p, q) is the desired edge length of tensor Mi

in direction ei, i.e. [15, 22]:

hi(e
i) =

1
p

ei Mi eiT
(2)

To illustrate the significance of this measure, let us construct
two neighboring mesh edges, PA and AB, along edge PQ

that satisfy the local mesh tensor field defined by Mp and
Mq (see figure 4(a)). hp and hq are the desired mesh edge
length along PQ computed in terms of equation (2) (i.e. ep

and eq are parallel to ~PQ), and |xa − xp| and |xb − xa| are
the length of edge PA and AB. Figure 4(b) shows the two
mesh edges in the transformed space. Both are unitary since
they perfectly match the tensor field [7, 10, 15]. For linearly
interpolated mesh size, the desired edge length along PQ at
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Figure 4: Illustration to the significance of γ.

position x is:

h(x, ~PQ) =
hq − hp

Lpq
x + hp (hq ≥ hp) (3)

Let x be the coordinate, x′ be the corresponding coordinate
in the transformed space, and xp = 0 is transformed into
x′

p = 0. The mapping between the two spaces is:

x′ =

Z x

0

1

h(x, ~PQ)
dx =

1

C
ln(

C

hp
x + 1) (4)

with C defined as (hq −hp)/Lpq . Plugging x′

p = 0, x′

a = 1
and x′

b = 2 into equation (4), the length of edge PA and
AB can be derived:

|xa − xp| =
hp(e − 1)

C
e

hq−hp
Lpq (5)

|xb − xa| =
hp(e − 1)

C
e

2(hq−hp)

Lpq (6)

Thus the ratio of two neighboring edges is

γ( ~PQ, ~PQ) =
|xb − xa|

|xa − xp|
= e

hq−hp
Lpq (7)

which is the definition for γ. Therefore, a mesh tensor field
with γ = 1 in all directions should be a constant field. A
mesh satisfying the tensor field of γx = 2 (γx is the γ be-
tween x axes at two points) should consist of edges in length
series: l0, 2l0, 4l0 ...... 2nl0 (l0 is the length of an edge on
x axis). Figure 5 shows a 2D mesh of a 1 × 1 domain ap-
proximately satisfying a mesh tensor field with γx = 1 and
γy = 1.24 between two points along a horizontal line. It

Figure 5: A 2D mesh satisfying a mesh tensor field of
γx = 1, γy = 1.24 between two horizontal points.

can be seen that edge length in x axis does not change while
the number of elements in y axis decreases from 32 to 4,
increasing the edge length in y direction at a ratio of 1.24.

The direction pair can be determined in terms of the eigen-
vectors of the given mesh tensors at two considered points.
We identify three situations: if both mesh tensors are
isotropic (three identical eigenvalues), both are degenerated
into a scalar and the computation of hi (i = p, q) and γ is in-
dependent of direction pairs. If both mesh tensors have two
identical eigenvalues, their geometric shapes are spheroids,
thus the two polar directions (the direction associated with
the different eigenvalue) consist of a pair. If any tensor has
three different eigenvalues, all eigenvectors are respected,
and three direction pairs have to be properly determined (see
section 3).

In case isotropic, this definition of γ is consistent with the H-
shock introduced in reference [21]. Since, in terms of equa-
tion (4), the measuring length of edge PQ in the transformed
space is:

L′

pq = |x′

q − x′

p| =
Lpq

hq − hp
ln(

hq

hp
) (8)

The exponential term of equation (1) can be replaced with
ln(

hq

hp
)/L′

pq , then:

γ = e
ln(

hq
hp

)/L′
pq = (hq/hp)

1
L′

pq (9)

which is the definition of H-shock. The definition of equa-
tion (1) is of our favor since it avoids the concept of measur-
ing length in transformed space.

It should be noted that this measure just describes the
smoothness property of the mesh tensor field, and does not
ensure if there is enough geometric space to create the de-
sired mesh, which should be determined using equation (8).



3. PROCEDURE OF MESH TENSOR
FIELD SMOOTHING

3.1 Overview

Given a piecewise mesh tensor field defined on vertices of a
background structure, our goal is to ensure the smoothness
quality of the field by checking and, if necessary, modify-
ing the discrete tensors so that the directional mesh gradation
measure γ associated with any edge of the background struc-
ture is less than or equal to a given threshold value, thus the
mesh satisfying the modified mesh tensor field has controlled
gradation. This section proposes a mesh tensor smoothing
procedure that respects directionality and smaller size.

A mesh tensor can be modified by changing its principle di-
rection ei (i=1,2,3) and the desired mesh size hi in each prin-
ciple direction, which relates to the eigenvalue of the tensor
as: λi = 1/h2

i . To respect anisotropy and the smaller mesh
size, three assumptions are adopted in the proposed proce-
dure:

• If a smaller mesh size is close to a large one, the large
size is reduced.

• If a tensor of high aspect ratio 1 is close to a low aspect
ratio tensor, the directions of the higher aspect ratio
tensor are preserved and the direction(s) of the lower
one may be adjusted.

• If two high aspect ratio tensors are close, all principle
directions are respected.

Although reducing the larger mesh size will increase the
number of elements, it is conservative and will not lose accu-
racy in analysis. Therefore the strategy of reducing the large
instead of increasing the smaller is adopted.

Figure 6 and 7 give two simple two dimensional examples to
demonstrate the concept of the second and the third assump-
tion, where mesh tensors attached onto point P and Q are
indicated by ellipses and referred to as Mp and Mq , while
the principle directions of Mp and Mq are illustrated by the
axes of local coordinate systems. In figure 6(a), the aspect
ratio of Mp and Mq is 10 and 1.1, respectively. To capture
the anisotropy tensor Mp represents and make smooth mesh
size variation possible, the direction of tensor Mq is adjusted
to align with the principle directions of Mp and reduce its
size in x axis as shown in figure 6(b). In figure 7, Mp and
Mq have the same aspect ratio but perpendicular stretching
directions. To capture anisotropy represented by both, all di-
rection information should be maintained, however, the size
in y axis of Mp and that in x axis of Mq are reduced to allow
smooth mesh size variation.

1Given a mesh tensor, the directional desired length distribution
follows an ellipsoidal surface [5, 15]. Its aspect ratio R is defined
as the ratio of the maximal desired length to the minimal desired
length. Clearly, R ≥ 1.
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Figure 6: A 2D example to illustrate the need for the
adjustment of both direction and size.
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Figure 7: A 2D example of preserving direction and
reducing size.

The subsections that follow are organized as follows: Section
3.2 discusses the adjustment of principle directions. Section
3.3 presents the method for directional larger mesh size re-
duction. Section 3.4 presents the overall algorithm.

3.2 Selection of directions

Consider the two mesh tensors attached onto the end vertices
of edge PQ. We capture anisotropic features by preserving
the stretching direction(s) of the higher aspect ratio tensor
while allowing the principle direction(s) of lower aspect ra-
tio tensor adjustable in terms of a parameter referred to as
“anisotropy respect factor” in this context.

Definition Let Rp and Rq be the aspect ratio of the tensor
at neighboring point P and Q, and Rp ≥ Rq , the anisotropy
respect ratio related to point P and Q is the value:

α =
(Rq − 1) Rp

(Rp − 1) Rq
(10)

Equation (10) has been defined such that α is a value in inter-
val [0, 1] with α = 0 if one of the mesh tensors is isotropic
and α = 1 if the two mesh tensors have the same aspect ra-
tio. This property is ideal for the adjustment of mesh tensor’s



Table 1: Selection of eigenvector pairs (Rp ≥ Rq).
Case Mp Mq Selection of eigenvector pair(s)

1 any sphere no needs
2 spheroid spheroid a pair of polar directions
3 ellipsoid spheroid three pairs (see figure 9)
4 ellipsoid ellipsoid three pairs (see figure 8)

eigenvectors. Note that, α = 0
0

(when both mesh tensors are
isotropic) does not cause a problem since computing α is
unnecessary.

Equation (11) gives the formula to adjust the eigenvectors of
the less anisotropic mesh tensor based on α, where e

p
i and

e
q
j are the eigenvector of mesh tensor at point P and Q with

Rp ≥ Rq , and e
q
j |new is the adjusted eigenvector at point Q.

It ensures the mesh tensor with strong anisotropy is main-
tained with respect to both. In case tensor Mq is isotropic,
simply set its eigenvectors the same as these of Mp.

e
q
j |new = (1 − α) e

p
i + α e

q
j (11)

Table 1 lists the selection of e
p
i and e

q
j based on geometry

shapes of the two mesh tensors in the application of equation
(11). If one of the two mesh tensors is spherical (case 1),
the selection of eigenvector pair is not needed. If both mesh
tensors are spheroidal (case 2), we assume that Mq remains
spheroidal after the direction adjustment, thus the two po-
lar directions should match. In case 3 and case 4, we select
eigenvector pairs by minimizing the maximal angle between
eigenvectors. Note that the angle between the two eigenvec-
tors should be in interval [0, π/2] since the desired mesh size
along a direction is the same as that in its opposite direction.

Consider figure 8 for the eigenvector pair determination in
case 4, where e

p
i and e

q
i (i=1,2) represent the eigenvectors of

the mesh tensor at point P and Q. The dashed line is parallel
to e

p
1 . It is drawn to show βj (j=1,2), the angle between e

p
1

and e
q
j . Since β2 < β1 in this setting, e

p
1 matches e

q
2. The

two remaining directions, e
p
2 and e

q
1, are related obviously.

If ambiguous situation where β1 = β2 occurs, we simply
match e

p
1 with either directions.

Figure 9 illustrates the eigenvector pair selection for case 3,
where Mq has two identical eigenvalue thus a polar direction
e

q
1 while Mp has three different eignvalues thus three prin-

ciple direction e
p
1 , ep

2 , ep
3. The three dashed vectors indicate

the eigenvectors of Mp originated at point Q. To determine
eigenvector pairs, we first match e

q
1 with one of the eigen-

vecors of Mp (ep
1 in the example since the angle between is

the smallest). Then, eigenvector e
q
i (i=2,3) is obtained by

projecting e
p
i onto the equatorial plane of Mq which mini-

mizes the maximal anlge.
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Figure 8: 2D example of eigenvector pair selection be-
tween tensor Mp and Mq .
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one ellipsoid case.

3.3 Directional adjustment of mesh
size(s)

For the mesh size represented by a mesh tensor, in general
there are three sizing components, one for each principle di-
rection. This section discusses the algorithm to check the
smoothness of mesh tensor variation and, if necessary, re-
duce all or part of the three sizing components. Special cases
where the number of sizing components is degenerated into
one or two components are also addressed.

Consider a mesh sizing component hp
i of mesh tensor Mp,

and a nearby mesh tensor Mq . The algorithm for checking
and possibly reducing Mp consists of four steps:

• get hq
i , the corresponding directional desired mesh size

associated with mesh tensor Mq .

• compute the directional mesh gradation measure γ in
terms of equation (1).
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Figure 10: Illustration to polar and equatorial sizing
components of a spheroidal mesh tensor.

• if γ > γ0 and hp
i > hq

i (γ0 is the prescribed threshold
value), reduce hp

i to make γ = γ0.

• repeat the above steps for all sizing components of Mp.

We identify three situations in computing hq
i : (i) when both

Mp and Mq are isotropic, hq
i is simply the degenerated scalar

value of Mq . (ii) When both geometric shapes of Mp and
Mq are spheroidal, the number of sizing components is de-
generated into two: polar component and equatorial compo-
nent (see figure 10). The equatorial components represents
the desired size in any direction orthogonal to the polar di-
rection. To make the reduced tensor remain spheroidal, the
polar and equatorial sizing component should match respec-
tively. (iii) In all other situations, each sizing component hp

i

is associated with a unique direction, thus we can determine
a direction associated with tensor Mq in terms of equation
(11) and compute hq

i using equation (2).

Let h′p
i be the reduced size of hp

i . To make γ = γ0 after the
reduction, we have

γ0 = e(h′p
i
−h

q
i
)/Lpq

Therefore
h′p

i = Lpqln(γ0) + hq
i (12)

After all sizing components of tensor Mp are processed, Mp

will be modified if any of its sizing components has been
reduced. The new tensor is constructed as follows:

ˆ

e1 e2 e3

˜

2

4

1/h′

1
2

0 0

0 1/h′

2
2

0

0 0 1/h′

3
2

3

5

ˆ

e1 e2 e3

˜T

(13)

where ei (i=1,2,3) is the original eigenvector of Mp or the
adjusted one given by equation (11), and h′

i is the reduced
or original sizing component. For spheroidal tensor, h′

3 is
equal to h′

2, e2 is an arbitrary direction orthogonal to e1 and
e3 = e1 × e2.
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size propagation.

3.4 The anisotropic smoothing algo-
rithm

Figure 11 describes the overall algorithm. The input is a
threshold value γ0 and a piecewise mesh tensor field defined
on vertices of a background structure. The algorithm first
traverses edges of the background structure once, processes
each edge one by one and collects neighboring edges that
need re-checking into a dynamically maintained list (when-
ever the tensor at a vertex is modified, all edges adjacent to
that vertex need re-checking). Then, it repeatedly processes
edges in the dynamic list until the list becomes empty. In
line 16-20 of figure 11, a tagging process is included to ef-
ficiently (in the complexity of O(1)) ensure that edges in the
dynamic list are unique.

When processing a specific edge PQ (line 3-20), the algo-
rithm first identifies the isotropic case by computing aspect
ratios and proceeds accordingly. The isotropic case is much
simpler to process since no directional consideration is in-
volved. For the anisotropic case, the algorithm first deter-
mines direction information as discussed in section 3.2, then
loops over each mesh size component associated with a di-
rection (or an equatorial plane), checks and possibly reduces
the current size component as discussed in section 3.3.

The small mesh size propagates when repeatedly processing
edges of the dynamic list. Since we do not increase any di-
rectional size throughout the algorithm, no oscillation occurs
during this process and the termination of the propagation is
ensured.

Figure 12 depicts a 1D example to demonstrate the propa-
gation. In this example, the background structure is shown
by the horizon axis and the black dots, and the piecewise
fields are indicated by poly-segments. The original piece-
wise size field is indicated by the cross symbols, which is
1.0 anywhere except a small size value of 0.2 at x = 0.0.
The smoothed field that satisfies γ ≤ 3.0 is indicated by cir-
cles and the dashed line. It can be seen that the small size
propagation from x = 0.0 to x = 0.6, reducing the size at
x = 0.3 and x = 0.6 to 0.53 and 0.86.



1 initialize a dynamic edge list
2 Loop over edges of the background structure
3 Let PQ to be the current edge, and Mp, Mq the two mesh tensors
4 if both tensors at P and Q are isotropic
5 process the size at P or Q using the algorithm on page 1150 of ref. [21]
6 else
7 compute anisotropic respect ratio α
8 determine direction information (see section 3.2)
9 loop over size components of Mp and Mq

10 get the direction(s) associated with the current component
11 check and, if required, reduce the size of current component (see section 3.3)
12 if any size component of Mp or Mq has been reduced
13 construct a new mesh tensor
14 replace the original tensor at P or Q with the new one
15 for all edges bounded by the reduced mesh tensor
16 if the current edge has not been tagged being in the dynamic list
17 tag the edge
18 insert the edge into the dynamic edge list
19 remove edge PQ from the list
20 clear the tag attached onto PQ
21 process the edges in the dynamic list in the same way until the list is empty

Figure 11: Mesh tensor field smoothing algorithm.

4. EXAMPLES

Three dimensional examples are given in this section to
demonstrate the application of the a priori anisotropic mesh
gradation control algorithm. In each example, an initial tetra-
hedral mesh goes through refinement and coarsening itera-
tions to match a smoothed tensor field (see [22, 15] for de-
tails). The original tensor field is either specified as mesh-
ing attributes (the first two examples), or adaptively defined
during adaptive simulations (the third example). To make
the tensor field interrogation efficient and allow the applica-
tion of the gradation control algorithm, we use the evolving
mesh as “background mesh”, and represent the original siz-
ing specification as a piecewise field attached to vertices of
the evolving mesh. The tensor field attached to the initial
mesh is pre-processed by the gradation control algorithm.
During the evolution of the “background mesh”, the tensor
field is locally adjusted to respect the original specification.
In particular, when new vertices are created in refinement,
we first compute the tensors at these locations in terms of
the given meshing attributes, then smooth them using a local
version 2 of the mesh gradation control algorithm (the first
two examples), or interpolate these tensors based on their
neighbors, but reset the tensor field by the error indicator
every 3-5 mesh adaptation iterations and re-smooth it (the
third example). Except projecting new vertices onto curved
boundaries [23], no other vertices are moved in our meshing
algorithm to avoid the possible diffusion of the tensor field.

2The local algorithm is the same as that in figure11 except that
the input is a list of mesh edges connected to new vertices instead of
the whole mesh.

4.1 Planar discontinuities in cubic do-
main

Figure 13(a) shows an initial tetrahedral mesh (40 tets and 27
vertices) over a 1 × 1 × 1 cubic domain. The original tensor
field is specified to have strong jumps at x = 0.5± 0.01 and
z = 0.5 ± 0.01 as follows:

M(x, y, z) =

2

4

1/h2
x 0 0

0 1/h2
y 0

0 0 1/h2
z

3

5 (14)

with

hx =



0.005 if |x − 0.5| ≤ 0.01
0.25 otherwise

(15)

hy = 0.25 (16)

hz =



0.005 if |z − 0.5| ≤ 0.01
0.25 otherwise

(17)

Figure 13 (b)-(f) show the result meshes conforming to a
smoothed tensor field controlled by different γ0. Figure 14
provides a slice of interior mesh faces and a close-up view to
where the two discontinuities meet in the mesh of γ0 = 2.0.
Table 2 indicates the number of tetrahedra of these conform-
ing meshes. It can be seen that small mesh size only propa-
gates in one direction, i.e., anisotropic features are preserved
by the tensor field smoothing process, and the smaller γ0,
the further the propagation, the more the resulting elements.
Also it can be seen that elements become isotropic on xz
plane (i.e. needle-like in 3D) where two anisotropic features
meet.
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(a) initial mesh. (b) γ0 = 8.0. (c) γ0 = 4.0.

(d) γ0 = 2.0. (e) γ0 = 1.75. (f) γ0 = 1.5.

Figure 13: Initial tetrahedral mesh of cubic domain and conforming tetrahedral meshes.

(a) a slice of interior faces. (b) close-up to where two discontinuities meet.

Figure 14: The interior view of a conforming tetrahedral mesh (γ0=2.0).

4.2 Boundary layers in intersected pipes

Figure 15 shows a quarter of two intersected cylinders and
a coarse initial mesh consisting of 61 tetrahedra and 35 ver-

tices. The radius of both cylinders is 50mm and the length
is 300mm, 400mm respectively. To generate a mesh with
boundary layers along the cylindrical surfaces, we specify
the tensor field as meshing attributes of the geometry model



Table 2: γ0 vs. size of conformed meshes (example 1).
γ0 1.5 1.75 2 3 4 8

# of tetrahedra 79,427 39,764 29,480 17,594 15,651 13,952
# of vertices 15,077 7,775 5,740 3,535 3,137 2,839

Table 3: γ0 vs. size of conformed meshes (example 2).
γ0 1.25 1.6 2 3

# of tetrahedra 341,608 80,263 6,733 3,326
# of vertices 60,820 14,609 35,625 16,731

as follows:

• On both cylindrical surfaces, the desired edge length
is 25mm in tangential and axial direction, and 1mm in
normal direction, i.e., given any point on cylindrical
surface, the tensor at the point is specified as:

ˆ

er eθ ez

˜

2

4

1 0 0
0 1/252 0
0 0 1/252

3

5

ˆ

er eθ ez

˜T

(18)
where er, eθ and ez are the base vectors in normal,
tangential and axial direction of the cylindrical surface.

• Anywhere else the desired edge length is isotropic and
is 25mm.

Figure 16(a)(b) show the mesh conforming to the smoothed
tensor field with γ0=1.6. Boundary vertices are automati-
cally placed onto the geometry boundary during mesh adap-
tation [23]. Figure 16(c) shows the interior mesh by hiding
all tetrahedra in front of the square plane. Figure 16(d)(e)
provide two close-ups, showing details of the boundary lay-
ers and the elements where two boundary layers meet. It
can clearly be seen that boundary layers have been gener-
ated, propagated inward and smoothly connected to the inte-
rior isotropic elements. Also note the element size changing
along the intersection curve of the two cylindrical surface in
figure 16(a). This is caused by the changing of the relative
normal directions between the two cylindrical surfaces. At
the bottom where the two cylindrical surfaces are tangent to
each other, no size is reduced in tangential and axial direc-
tions, while directional element size reductions are applied
when the two normal directions are not aligned. Figure 17
shows the tetrahedral meshes conforming to the smoothed
field with γ0=1.25, 2.0 and 3.0. Table 3 indicates the mesh
size increase with respect to different γ0. Again it can be
seen that, the depth of the boundary layer is controlled by
the specified γ0 value, and the closer to 1, the further the
inward propagation, the more the result elements.

4.3 Cannon blast simulation

This example shows the application of the a priori proce-
dure in 3D adaptive simulation of cannon blast problem gov-

(a) geometry model. (b) initial mesh.

Figure 15: A quarter of two intersected pipes and its
initial mesh.

erned by Euler’s equation. Figure 18 shows a perforated can-
non (idealized tube with a hexagonal cross section and with
holes) inside a box domain. Figure 19 shows the evolving
mesh and density field when the shock inside the cannon
passed half of the perforated holes after 700 cycles of so-
lutions and mesh adaptations. Figure 19(a) shows a slice of
mesh faces intersecting the cut plane and Figure 19(b) shows
the density contour surfaces. Figure 19(c) provides a close-
up to the slice mesh faces and 19(d) provides a close-up to
density contour near the perforated holes. During the adap-
tive simulation, anisotropic mesh tensor fields are adaptively
specified in terms of the second derivatives of the evolving
density field and a discontinuity detect, then smoothed us-
ing the anisotropic mesh gradation procedure with γ0=3.0.
Details of this adaptive simulation can be found in refer-
ence [2, 24].

5. CONCLUSION

This paper provides a straightforward way for the a priori
control of anisotropic mesh gradation, which may smooth
the variation of both eigenvalues and eigenvectors of a mesh
tensor field. Examples in three dimensional meshing and
adaptive simulations have shown how “abrupt” element size
and shape may be specified and how the smoothing is effec-
tively accomplished.

With this a priori mesh gradation control, probably it is use-
ful to include the directional field of γ0 as a part of the mesh-
ing attribute in generating desired meshes for fluid problems.
Another possible extension is to determine the relationship
between prescribed γ0 value and the adapted mesh quality.



(a) top-front view. (b) bottom-back view.

(c) cut-off view. (d) close-up. (e) close-up.

Figure 16: Tetrahedral mesh conforming to the smoothed field with γ0=1.6.
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Figure 18: Analysis domain: a cannon with 24 perforated holes inside a box.
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(a) a slice of the tetrahedral mesh intersecting the cut plane. (b) contour surfaces of the density field.

(a) mesh close-up. (b) density contour on cut plane.

Figure 19: Result mesh and density distribution after 700 adaptive cycles.
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