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ABSTRACT

We propose a new two-dimensional meshing algorithm called PINW able to generate meshes that accurately approx-
imate the distance between any two domain points by paths composed only of cell edges. This technique is based
on an extension of pinwheel tilings proposed by Radin and Conway. We prove that the algorithm produces triangles
of bounded aspect ratio. This kind of mesh would be useful in cohesive interface finite element modeling when the
crack propagation path is an outcome of a simulation process.
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1. INTRODUCTION

One of the most widely used techniques to simulate
fracture is cohesive interface finite element modeling.
In this kind of model, the area or volume under con-
sideration is subdivided into bulk elements, which are
typically triangles or quadrilaterals in 2D and tetra-
hedra or hexahedra in 3D. Next, interfacial elements,
which are edge elements in 2D or surface elements in
3D, are placed between some or all pairs of adjacent
bulk elements. The cohesive model prescribes a rela-
tionship relating traction to relative displacement on
the interfacial elements. There is an abundance of lit-
erature that deals with the nature of this relationship,
e.g., see [1] and the references therein. A widely ac-
cepted modeling assumption is that the total energy
to create the crack is proportional to its surface area
(or length in 2D). In fact, the critical energy release
rate Gc per unit surface area or length of crack is often
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a parameter of the cohesive model.

In a finite element model, the energy release rate is
associated with surface area or length of interfacial
elements composing the crack being modeled. If the
discrepancy between the “true” crack path (i.e., the
path the crack would follow if it were not for the fi-
nite element constraint that the crack path must lie
on predetermined interfacial elements) and the path
of the simulated crack is large for certain paths, then
nonphysical preferred crack directions can exist. In
other words, the results of the simulation would de-
pend upon how well the boundaries of the mesh cells
are aligned along the true crack path. In this paper,
we propose a meshing technique that approximates the
true path with the path along mesh boundaries with
high accuracy even though the true path is unknown to
the mesh generation algorithm. In particular, the ap-
proximation has the property that for any crack path,
the simulated and true crack path lengths converge to
each other upon refining the mesh, which is a property
not possessed by other simpler families of meshes. We



call this algorithm the PINW mesh generator because
it is based on an extension of the 1:2 pinwheel tiling
described in the next section.

In Section 3 we define “deviation ratio” and consider
a simple experiment to test the properties of the 1:2
pinwheel mesh. The 1:2 pinwheel tiling seems to be too
restricted to be useful for a general-purpose algorithm,
so we explain how to generalize it to arbitrary triangles
in Section 4. This generalization is the basis for our
meshing algorithm PINW. In Section 5 we prove that
our generalization still has the isoperimetric property.
Then in Section 6 we describe the algorithm. The
main new ingredient introduced in that section is a
procedure to convert a tiling to a mesh. The aspect
ratio of the resulting mesh is analyzed in Section 7.

The aspect ratio of the mesh is important for the co-
hesive fracture application because the bulk elements
(e.g., triangles in 2D) are used to model a continuum
mechanical theory such as linear elasticity. It is well-
known (see, e.g., Theorem 4.4.4 of [2], in which aspect
ratio is called “chunkiness”) that poorly shaped ele-
ments can lead to substantial errors in the elasticity
solution.

2. PINWHEEL TILINGS

In this section, we provide a brief introduction to the
properties of pinwheel tilings. Tilings are a covering of
the euclidean 2-space E2 starting with a finite number
of shapes called prototiles. The tilings are constructed
by translated and rotated copies of the prototiles that
intersect each other only along the boundaries. The
tilings were proposed to model crystallographic struc-
tures in the physics community.

The pinwheel tilings [3] are classified as aperiodic
tilings. In E2 this is equivalent to saying that no trans-
lation of the tiling leaves it invariant. The basic pin-
wheel tiling as developed by Radin and Conway has a
hierarchical structure and is constructed by successive
operations of subdivisions and expansions.

Consider a right triangle with legs of length 1 and 2
referred to as the short and medium sides. The hy-
potenuse is thus of length

√
5 and will be called the

long edge. The vertices will be named similarly, that
is, the small, medium and long vertices are opposite
the corresponding sides. For brevity, we will call a
right triangle with the ratio of its short to medium
edge equal to 1/2 as a “1 : 2 right triangle” and the
tiling formed by its copies as a “1 : 2 tiling.” This
single tile is subdivided into five triangles that are all
congruent to each other as shown in Figure 1.

If one were to dilate the subdivision in Figure 1 by a
factor of

√
5 and then rotate and translate the result-

ing figure so that the dilated copy of C ended up coin-

cident with the original tile P , then a larger subset of
E2 would now be tiled. The above subdivision scheme
is then applied to each of the five copies of P , and
then another dilation followed by rotation and trans-
lation is carried out. Continuing this process infinitely
would lead to a tiling of the plane. Thus, in the case
of the standard pinwheel tilings, P and PR (where PR

denotes the reflection of P about the x-axis) form the
set of fixed prototiles and the tiling uses translations
and rotations of this set.

For our purposes however, we will concentrate just on
the subdivision step and omit the dilation, translation
and rotation steps, leading to the “subdivision” pin-
wheel tiling in which the cell diameter tends to zero
and the area of the plane covered by the mesh does
not expand from step to step. This is because we are
interested in generating a mesh with varying amounts
of refinement for a fixed region rather than a mesh
that ultimately covers E2. In the subdivision pinwheel
tiling, one starts with a fixed 1 : 2 triangle and then
repeatedly subdivides first the initial triangle and then
each subtriangle into five congruent subtriangles using
the above rule.
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Figure 1: Basic pinwheel subdivision proposed by Radin.

One can enumerate the rotation angles of the child
triangles with respect to P and PR as RθPR, Rπ+θP ,
RθP , RθPR, R π

2 +θP where Rθ is rotation by θ in the
counterclockwise direction. For the standard 1 : 2
right triangle, θ = arctan(1/2) and θ/π in this case is
irrational. The significance of this is as follows. As the
number of subdivisions goes to infinity, so do the dis-
tinct orientations of the triangles. For example, sup-
pose we keep track of the orientation of all triangles of
type C with respect to the parent triangle in the sub-
divisions. As can be seen in Figure 1, the angle made
by a triangle of type C with respect to the parent in
the nth subdivision is nθ. Since θ/π is irrational, nθ
will represent a different angle for each n.

This presence of an infinite number of orientations
leads to a special property known as the isoperimet-
ric property [4]. For a tiling of E2, isoperimetry means
that given an ε > 0, there exists an R such that for any
two points P and Q on the boundaries of the triangles
with ||P −Q|| > R, the shortest path from P to Q that



uses only tile edges has length at most (1+ ε)‖P −Q‖.
Here ‖P − Q‖ denotes the Euclidean distance from P
to Q, which will also be denoted as |PQ|.

There is an analogous property for the subdivision pin-
wheel tiling. In this case, let P , Q be two points on the
boundary of the initial triangle. Then for every ε > 0,
there exists an n such that after n recursive subdivi-
sions of the initial triangle, the shortest path from P to
Q using only triangle edges is at most ||P −Q||(1+ ε).
This theorem can be generalized so that P and Q do
not have to be on the boundary of the initial triangle
but may be any two distinct points.

The isoperimetric property is the reason that pinwheel
tilings are attractive for cohesive interface modeling.
Consider a finite region Ω ⊂ E2 tiled with an infinite
sequence of pinwheel tilings M1,M2, . . . in which the
triangles in Mi all have side lengths hi, 2hi,

√
5hi,

and hi → 0 as i → ∞. Then for an arbitrary straight
segment of length l connecting p ∈ Ω to q ∈ Ω, and for
an arbitrary ε > 0, there exists an I such that in each
of the tilings MI ,MI+1, . . ., there is a path from p to
q using only mesh edges (except for initial and ending
segments to connect p and q to the boundaries of the
triangles that contain them) such that the length of
the path is l(1 + ε). We will state this result in a
more general setting in Section 5.

Since the above result holds for an arbitrary line seg-
ment, it also holds for any piecewise smooth curve or
network of such curves. The reason is that a network
of piecewise smooth curves can be approximated ar-
bitrarily accurately with a network of line segments.
Then each of the line segments can be approximated
arbitrarily accurately with paths of the pinwheel tiling.

Thus, when used for cohesive fracture, the pinwheel
tiling has the property that all possible crack paths
are approximated as accurately as desired (in terms
of their length) by paths that use only mesh edges,
as the mesh diameter tends to zero. As we shall see
in the next section, more common mesh generation
techniques do not have this property.

3. A COMPUTATIONAL EXPERIMENT

In this section we carry out some simple experiments
to quantify the isoperimetric property of the 1:2 tiling.
Since our interest here is in meshes, we first explain
how to convert the 1:2 pinwheel tiling to a mesh. It
is apparent from Figure 1 that the pinwheel tiling is
almost a triangulation except for the hanging node
bisecting the medium side of triangle E. We define
a hanging node of a planar subdivision into triangles
to be a point that is a vertex of one triangle but lies
on the strict relative interior of an edge of another
triangle.

Table 1: Direct computation of deviation ratios for the
first five levels of pinwheel subdivision.

n dev1(PTn)

1 1.3416
2 1.1948
3 1.1843
4 1.1264
5 1.0831

It is fairly simple to make the pinwheel tiling a mesh
[3]: we divide every triangle into two by joining its
medium vertex to the midpoint of its medium edge. In
fact, it is not necessary to split all the triangles, and
in our example we have obtained a mesh by splitting a
certain subset of the tiles. This splitting is done only
on the finest level of the pinwheel subdivision.

Our computational experiment is as follows. Starting
from a 1 : 2 rectangle, we divide it into two 1 : 2
triangles and then apply the pinwheel subdivision n
times to each of the 1 : 2 triangles. Thus, the final
tiling has 2 · 5n triangles. The resulting tiling of the
original rectangle is then converted to a mesh using
the technique in the last paragraph.

Given a tiling T of a domain Ω, let Skel(T ) be the
1-skeleton of T , that is, the union of all edges of all
triangles, and let V (T ) be the set of all vertices of
T . Let l be a positive parameter chosen small enough
so that Ω contains a disk of diameter l. We propose
to evaluate isoperimetric quality of the triangulation
with the following quantity, which we refer to as the
l-path deviation ratio:

dev
l

(T ) = max

{
distSkel(T )(p, q)

‖p − q‖ :

p, q ∈ V (T ) and ‖p − q‖ ≥ l

}

Here, distSkel(T )(·, ·) means shortest distance among
paths restricted to Skel(T ). Thus, this quantity mea-
sures the maximum ratio between the paths in the
mesh versus Euclidean paths. Clearly for any mesh
T of any polygon, devl(T ) > 1. The pinwheel mesh
of the 1:2 rectangle has the property that for any
l ∈ (0, 1), devl(PT m) → 1 as m → ∞ where PTm

is the pinwheel tiling of the 1 : 2 rectangle after m
levels of refinement.

Our experiment is to evaluate dev1(PTm) for
PT1, . . . ,PT5. The results are depicted in Table 1.

In contrast, consider the meshes in Figure 2. The
deviation ratios of these meshes have lower bounds
greater than 1 irrespective of the number of subdivi-
sions. In particular, the lower bound is

√
2 ≈ 1.414 for
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Figure 2: Two regular meshes of a square

the mesh in Figure 2(a). For the mesh that was used
by Xu and Needleman [5] (one of the first papers on
cohesive finite element modeling), which is shown in
Figure 2(b) and is sometimes called a “cross-triangle
quadrilateral” mesh, the worst case deviation ratio can
be shown to be approximately equal to 1.082 in the
limit as the mesh cell size tends to 0.

4. GENERALIZATION OF PINWHEEL
TILINGS

The 1 : 2 pinwheel tiling discussed up to now was
extended to a tiling with an arbitrary right triangle
and its reflection as a prototiles by Sadun [6]. The
small angle of the prototile determines the finiteness of
the orientations and sizes of the tiles in the tilings that
are discussed in [6]. We now describe our approach
to extend the pinwheel subdivision to arbitrary (non-
right) triangles.

First we propose a way of subdividing a general trian-
gle and show that any number of subdivisions would
produce triangles similar to a finite set of prototiles.
Consider the triangle shown in Fig. 3. We denote the
vertices by A, B and C in clockwise order and the
included angles at these vertices by a, b and c respec-
tively. Assume also a < c. First, draw the segment
CF such that F is a point on AB and ∠FCB = a
measured counterclockwise from CB. From F draw
FD such that D is on AC and ∠DFC = b measured
clockwise from FC. From D draw E and G such that
E is on AB and G is on CF and ∠ADE = b clockwise
from DA and ∠GDC = a counterclockwise from DC.
Thus, we have a subdivision of a general ∆ABC into
five triangles of which I, III and V are similar to the
parent and the remaining two II and IV are similar
to each other but not to the parent. Note that we re-
quired a < c to make this construction but we did not
require any ordering on b.

Theorem 1. The above procedure for subdivision pro-
duces triangles with angles belonging to the set A1 =
{a, b, c} or to the set A2 = {a, c − a, π − c}.
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Figure 3: Our generalized pinwheel subdivision of an
arbitary triangle into five subtriangles.

Proof. This is obvious by simply checking all the an-
gles in Figure 3 and using the fact that angles of a
triangle sum to π.

Theorem 2. If the above subdivision procedure is used
recursively on the subtriangles, then any triangle pro-
duced has angles either from A1 or A2.

Proof. One checks that if we define a′ = a, b′ = c− a,
c′ = π − c then {a′, c′ − a′, π − c′} = {a, b, c}.

For the rest of this paper, we say that a triangle with
angles {a, b, c} (listed in this order) is conjugate to a
triangle with angles {a, c−a, π−c}. The point of The-
orem 2 is that conjugacy is a symmetric relationship.
We remark that if the original triangle is a right tri-
angle, i.e., c = π/2, then this triangle is similar to its
conjugate. This is the case considered by [6].

These two theorems imply a procedure for subdividing
any initial triangle T1 = 	ABC with angles a, b, c.
Assume a ≤ b ≤ c. Apply the first subdivision rule to
get five smaller triangles. Then, for the three similar
to T1, reapply the same rule recursively. For the two
conjugates, apply the other rule. For the conjugate
triangles, we do not necessarily have the order a ≤
c−a ≤ π− c, but we do not need that order. We need
only the inequality a < π−c, which must be true since
a + b + c = π.

This procedure runs into a difficulty when c ≈ a (i.e.,
the initial triangle is close to equilateral) because in
this case the conjugate triangle will have a bad aspect
ratio. We get around this problem as follows. If c ≈ a,
then we first subdivide the initial triangle into three
about its in-center, that is, we join the in-center to the
vertices of the original triangle and form three subtri-
angles. We use a cutoff in our algorithm: if c − a is
less than the cutoff, then the preliminary tripartition
is carried out. The cutoff for c−a is chosen to optimize
the smallest angle. In other words, a parent is divided
about the in-center if the smallest angle prior to divi-
sion is smaller than after the division. Here smallest



angle happens to be the minimum of the angles in the
two sets A1 and A2 for a given set of angles {a, b, c}
and can be shown to be ≈ 0.4 rad. Thus, we take the
cutoff to be 0.4 rad.

5. ISOPERIMETRIC PROPERTY

This section is devoted to showing the result that
the generalization of the pinwheel tiling introduced in
the previous section obeys an isoperimetric inequal-
ity. The analysis and proof technique in this section
closely follow the proof from [4]. The following is the
key lemma in the proof of isoperimetry.

Lemma 1. Let triangle T = 	ABC be as above. As-
sume a/π is an irrational number, where a is the angle
of T at A. Let θ ∈ [0, 2π) and ε > 0 be arbitrary. Then
there is a refinement of T following the above rules that
contains a triangle edge e such that the angle between
e and the x-axis lies in the interval (θ − ε, θ + ε).

Furthermore, the length of e is at least ζ(a, b, c, ε)L,
where a, b, c are the angles of T , ε is as above, ζ() is
a fixed positive-valued function, and L is the longest
side-length of T .

Proof. Observe that Triangle III in the above subdi-
vision is similar to the initial triangle T but is rotated
by angle a. Call this triangle T ′. If this triangle is sub-
divided by the same rule again, there will be another
smaller copy of T , say T ′′, rotated by 2a etc. The infi-
nite sequence a, 2a, 3a, . . . taken mod 2π is dense in the
interval [0, 2π) by the assumption that a/(2π) is irra-
tional. Therefore, for some sufficiently fine mesh, there
is an edge e of triangle T (k) in the interval (θ−ε, θ+ε).

For the second part of the lemma, observe that for
any ε > 0 there is an n ≡ n(ε, a) such that ev-
ery point in [0, 2π] is distance (mod 2π) at most ε
from at least one point in the set {a, 2a, 3a, . . . , na}.
Therefore, one of T, T ′, . . . , T (n) described in the last
paragraph will have the desired edge e. The longest
side-length of T is L; the longest side-length of T ′ is
q(a, b, c)L, where q is some universal function (not de-
pending on anything other than a, b, c) derived from
our construction. By similarity, the longest edge
of T (2) has length q(a, b, c)2L. Thus, if we define
ζ(a, b, c, ε) ≡ γ(a, b, c)q(a, b, c)n(ε,a), where γ(a, b, c) is
the ratio of the shortest to longest side length of T ,
then the length of e is at least ζ(a, b, c, ε)L. This proves
the second part of the lemma is also satisfied.

For the first main theorem of this section, we need one
more definition. We say that a generalized tiling T ′ of
a triangle T refines another generalized tiling T of T
provided that for each tile τ of T , either τ appears in
T ′ or a subdivision of τ appears in T ′. This definition

implies that V (T ) ⊂ V (T ′) and Skel(T ) ⊂ Skel(T ′).
The first main theorem for this section is as follows.

Theorem 3. Let T = 	ABC be a triangle with an-
gles a, b, c such that a < c and a/π is irrational. Let
T 0, T 1, . . . be an infinite sequence of generalized tilings
of T generated by the rules above. For each i, let yi be
the maximum tile diameter in T i. We assume the se-
quence of tilings has the following two properties: (a)
T i+1 refines T i, and (b) yi → 0 as i → ∞. Let P, Q
be any two points on the boundary of T . Then

lim
i→∞

dist
Skel(T i)

(P, Q) = |PQ|.

In other words, every straight-line path connecting two
points (P, Q) on the boundary of T is approximated
with arbitrary accuracy by a path of edges of the tiling.

Due to space limitations, we defer the proof of this
theorem to the full paper. A draft of the full paper is
available from arxiv.org.

The preceding theorem has the drawback that it per-
tains only to paths starting and ending on the bound-
ary of the root triangle. For isoperimetry, we would
like to generalize the result to paths with arbitrary in-
terior P and Q. Since the nodes of the pinwheel tiling
are dense in the interior (in the limit as the mesh size
is refined), the following theorem provides a suitable
generalization and will be taken as our definition of
the isoperimetric property.

Theorem 4. Let T 0, T 1, . . . be a sequence of gener-
alized pinwheel tilings of T (satisfying a < c and a/π
is irrational as in the previous theorem) such that the
maximum cell diameter tends to zero and such that
T i+1 refines T i for all i = 0, 1, 2, . . .. Let P, Q be any
pair of distinct points lying on Skel(T n) for some n.
Then

lim
m→∞
m≥n

dist
Skel(T m)

(P, Q) = ‖P − Q‖.

Proof. Consider the segment PQ lying in T . Let ε > 0
be given. Make a list U1, . . . , Ur of tiles in Tn tra-
versed by this segment. Since PQ crosses Ui, define
PiQi to be Ui ∩ PQ. Observe that Pi, Qi both lie on
the boundary of Ui. By the preceding theorem, af-
ter a sufficient number of further subdivisions (say s),
there exists a path in Skel(T n+s) between Pi and Qi

of length |PiQi|(1 + ε). This choice of s depends on i,
so take the maximum such value of s (maximum over
all i = 1, . . . , r). Then there is a path in Skel(T n+s)
from P to Q of length at most

|P1Q1|(1 + ε) + |P2Q2|(1 + ε) + · · · + |PrQr|(1 + ε),

i.e., at most |PQ|(1 + ε).



6. MESHING AN ARBITRARY REGION

In this section we present our algorithm PINW to mesh
a region Ω with arbitrary polygonal boundary. A sum-
mary of PINW appears in Figure 4. The steps in this
summary are described in more detail in the remainder
of this section. The current version of PINW is 1.0 and
has been coded in Matlab. An example output from
this algorithm is shown in Fig. 5.

We first start with a coarse triangulation of the do-
main. We use the Triangle package [7] developed by
J. Shewchuk, which uses Delaunay triangulation. The
triangles produced have bounded aspect ratio. The
second preliminary step, as mentioned in Section 4, lo-
cates triangles too close to equilateral and splits them
at their in-center.

A third preliminary step is to identify and split trian-
gles whose smallest angle a is a rational multiple of
π. In principle, this test could be conducted exactly
using number-theoretic methods since the coordinates
of the vertices of each triangle, being floating-points
numbers, are rational numbers and can be treated with
integer algorithms by clearing common denominators.
Modifying a triangle in which a is a rational multiple
of π is trivial in principle because any small random
perturbation of a node of such a triangle will lead to
an angle that is not a rational multiple of π with prob-
ability 1.

In practice, this exact test and solution are both unde-
sirable. For practical use of the algorithm, we would
like to avoid the case when a is close to a rational mul-
tiple of π of the form mπ/n where n is a small integer.
Therefore, a more practical heuristic is to check each
smallest angle against a finite list of the form mπ/n,
where m, n range over a pre-selected set of small in-
tegers. This step has not been implemented in the
current version of our code PINW 1.0 because we are
still seeking the best practical heuristic. (Indeed, in
Figure 5, one coarse triangle is close to a 45-degree
right triangle, and hence one part of the subdivision
exhibits a shortage of possible directions.)

Let T0 be the list of triangles that are produced by
these preliminary steps. Thus, the triangles in T0 form
a simplicial triangulation of the input set Ω. We call
these triangles the root tiles. The generalized pinwheel
subdivision is then performed on the the root tiles to
obtain a refined tiling. The procedure to refine the
mesh used in PINW 1.0 is based on a simple heap
[8]. The heap is initialized with all triangles in T0,
which are ordered in the heap according to length of
the minimum altitude. The main loop for the subdivi-
sion is to remove the top member of the heap (i.e., the
unsubdivided tile with the largest value of minimum
altitude) and replace it with its five children. The pro-
cedure terminates when the top triangle in the heap is

Algorithm PINW 1.0

1. Generate a mesh for Ω with bounded aspect
ratio using Triangle.

2. Split triangles too close to equilateral at
their in-centers.

3. Split triangles whose smallest angle is a ra-
tional multiple of π at a point near the in-
center.

4. Let the set of triangles obtained after steps
1–3 be called T0.

5. Initialize a heap containing triangles that
need splitting. The triangles are ordered
so that the one whose minimum altitude is
maximum is at the top of the heap. Initially
the heap contains all triangles from T0.

6. Repeatedly remove a triangle from the heap
and split it into five, until the size of the
top element of the heap is sufficiently small
according to the user’s specification.

7. Let T∗ be the set of tiles including those
in T0 and all their descendants obtained by
subdivision. Let Tf ⊂ T∗ be the set of leaf
tiles.

8. Loop over all tiles in T∗ starting from the
coarsest to determine the value of big(e) for
each edge e of any tile.

9. For each big edge (i.e., each edge in the im-
age of the “big” operator), select one side
as moving and the other as staying. Sort
the list of nodes lying on the staying side of
each such edge.

10. Loop over tiles in T∗ starting from the coars-
est excluding Tf . For each such tile T and
for each of its vertices D, E, F as labeled in
Figure 3, let e be the maximal big edge con-
taining the particular vertex. If this vertex
D, E or F is on the moving side of e and
is very close to a vertex v′ on the staying
side, then displace it to coincide with v′ and
apply the induced affine transformation to
subtriangles of T .

11. Apply Delaunay triangulation to each dis-
torted, subdivided leaf tile. (The distortion
of the leaf tiles is due to the affine transfor-
mations in the previous step. The subdivi-
sion of the edges is due to the presence of
hanging nodes.) The collection of triangles
output from this step is a simplicial mesh of
Ω.

Figure 4: Overview of the steps of the PINW algorithm.
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Figure 5: The coarse mesh for this figure had three trian-
gles. The final mesh after pinwheel tiling, collapse-node
operations and Delaunay triangulation is shown.

smaller than the user-specified mesh size requirement.

Note that during the subdivision procedure, the angles
a, b, c in Figure 3 are assigned to smallest, middle and
largest angles respectively for tiles similar to root tiles.
For the conjugate tiles, angles a, b, c are assigned ac-
cording to the conjugacy relationship. In other words,
if the angles of the root tile are a′, b′, c′ in that order,
then the angles a, b, c in the conjugate tile are assigned
in the order a = a′, b = c′ − a′, and c = π − c′. This
ensures that the conjugate of the conjugate is again
similar to the root tile.

From this description, it is apparent that PINW 1.0
supports a single global user-specified mesh size re-
quirement. For many applications of mesh generation,
it is useful to have a finer mesh in one part of the do-
main versus another. This can also be implemented
in the framework of generalized pinwheel subdivision
but is not available in PINW 1.0. In addition, several
aspects of our analysis that follows below would have
to be generalized to cover graded meshes.

Once the subdivision procedure is complete, the re-
sulting tiling must be converted to a simplicial mesh.
For the 1:2 pinwheel triangulation, this step is quite
straightforward as mentioned in Section 3. In the gen-
eralized case, however, it is much more complicated
and involves several steps that we shall now describe.

Let T∗ be the list of all tiles in the hierarchy: it in-
cludes the tiles in T0 and all their descendants from
the subdivision procedure. The tiles in T∗ naturally
have a forest structure associated with them in which
the forest roots are root tiles. Let leaf tile denote a tri-
angle in T∗ that is not further subdivided during the
generalized pinwheel subdivision phase. Let Tf be the
set of leaf tiles.

The first step in converting the tiling to a mesh is to
identify for each edge e of each tile T ∈ T∗ the edge

that we denote big(e). This is defined to be the edge e′

of a triangle T ′ higher up in the subdivision hierarchy
(i.e., T is derived from T ′ via a sequence of zero or
more subdivision operations) such that e ⊂ e′, and
such that e′ is maximal with this property (i.e., there
is no other ancestor of T with an edge e′′ that strictly
contains e′).

For each triangle in T0, big(e) = e. For some other tile
T with an edge e, it is a straightforward matter based
on a checking a finite number of cases whether big(e) =
e or big(e) = e. In the latter case, big(e) can be
determined from the immediate parent of T (assuming
big(e) is already tabulated for the the parent’s edges).
Thus, it is possible to determine big(e) for each edge
of each tile in T∗ with a constant number of operations
per tile.

Next, for each “big” edge e (that is, an edge such that
big(e) = e), identify a moving and staying side. This
choice can be quite arbitrary, except for two stipula-
tions. An edge e adjacent on the exterior boundary of
Ω should have its inside labeled staying (i.e., no tiles
lie on its moving side). An edge in correspondence
with CF in Figure 3 (every big edge generated during
the subdivision procedure is in correspondence with ei-
ther DE, DF , CF or DG) should have the side facing
vertex B labeled as moving. We now identify all the
nodes on the staying side of e and sort them in order
of occurrence on the edge. This sorted list is saved for
the next phase of the algorithm.

In the next phase, we loop over triangles in T∗ − Tf

starting from the coarsest and perform collapse-node
operations on each. Let T be a tile in T∗ − Tf . Let
the four vertices of T introduced when it is subdivided
be labeled D, E, F, G as in Figure 3. We perform no
operation for G since it is on the staying side of edge
CF . The maximal big edge containing D is big(AC);
call this b(D). The maximal big edge containing E
and F is big(AB); call this b(E) and also call it b(F ).
Let v be one of D, E, F . We check whether v is on
the moving side of b(v). If it is on the staying side,
then no further operation is performed. If it is on the
moving side, then we find the vertex v′ taken from the
staying side of b(v) that is closest to v. This v′ can be
found efficiently using binary search on the precom-
puted sorted lists. If ‖v − v′‖ ≤ δ, we collapse nodes
v and v′ by displacing v to v′. Here δ is a tolerance
discussed more below.

This displacement induces uniquely determined affine
transformations on triangles contained in T as follows.
If v is the vertex labeled D in Figure 3, then there is
a unique affine transformation on 	ADF that leaves
A and F fixed and moves D to v′. A second affine
transformation of 	CDF leaves F and C fixed and
moves D to v′. If v is the vertex labeled E, then
there are unique affine transformations determined for
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Figure 6: Example of a collapse-node operation is shown.
A node on one side of a “big” edge that lies within the tol-
erance of a node on the other side is moved and merged
with the nearby node on the other side.

	ADE and 	DEF . Finally, if v is the vertex labeled
F , then there are transformations for each of 	DEF ,
	CDF and 	BCF . The algorithm applies all the rel-
evant affine transformations caused by motion of the
node. Note that the affine transformations agree on
the boundaries between these triangles, so there is no
consistency issue regarding which transformation to
apply. These transformations move the triangle, in-
cluding every node at deeper levels of the hierarchy
contained in it. This concludes the description of the
collapse-node operation. See Figure 6 for an illustra-
tion of this operation.

Note that a single tolerance δ is used to determine mo-
tion. The theoretical value for δ is given by (2) below.
We will verify later that this value of δ is sufficiently
small so that two important properties hold:

Property 1 of δ: If a vertex v′ is the target of a
collapse-node move, then it should be uniquely
determined, i.e., there should not be two vertices
v′ and v′′ on the staying side of b(v) that are both
within distance δ of v.

Property 2 of δ: No two vertices on the moving side
of big(e) for any e should be collapsed to the same
node on the staying side.

In a future extension of PINW to handle graded
meshes, presumably the value of δ would not be a sin-
gle global value.

The affine transformations described above have the
property that all of the segments illustrated in Fig-
ure 3 remain straight (collinear) segments after the
transformation. It is apparent that each collapse-node
operation could cause many nodes to move. We will
say that the one node v that is displaced to match v′

is directly displaced. The nodes moved by virtue of an
affine transformation induced by moving v are said to
be indirectly displaced.

A collapse-node operation, once executed, cannot be
undone by future collapse-node operations. The rea-

son is that v is never moved again. It is never moved
again directly since it can be moved directly only when
the tile T = 	ABC that created it is processed. It
can also never be moved again indirectly since there
is no tile in lower levels of the hierarchy that contains
it except as a corner vertex, and corner vertices of a
triangle T ′ are not moved when T ′ is processed. Simi-
larly, v′ can never be moved again. The reason is that
v′ is never moved directly (since it is on the staying
side of its big edge). Any transformation that might
move v′ indirectly takes place at a level of the hierar-
chy higher than the level of T .

We carry out all available collapse-node operations for
all triangles in the order described. Once all collapse-
node operations are complete, we are left with the
collection of distorted leaf tiles, each of which may
have one or more hanging nodes. These hanging nodes
are collinear with the endpoints of the edges on which
they hang because, as noted above, we do not disturb
any collinearity relationships with collapse-node oper-
ations. The hanging nodes are all at least δ apart from
the corners and from each other.

For each of these distorted tiles, we compute its Delau-
nay triangulation (including the hanging nodes). The
collection of all of these Delaunay triangles forms a
simplicial mesh that is the final output of PINW.

The running time of PINW is analyzed as follows. Let
n be the number of leaf tiles. Then the total num-
ber of tiles is O(n), as is the total number of vertices
and edges. The heap insertions and deletions require
O(n log n) total operations. Sorting all the lists asso-
ciated with big edges requires O(n log n) operations.
Looking up a vertex in a sorted list requires O(log n)
operations for binary search, hence all of the lookups
to see if a node should be collapsed require O(n log n)
operations.

The recursive application of affine transformations re-
quires O(nd) operations since each vertex is trans-
formed at most d times, where d is the maximum
depth of the forest associated with T ∗. We claim
d = O(log n). It follows from Lemmas 3 and 4 in
the next section that the minimum altitude of a tri-
angle at depth k lies between α0C

k and α1D
k, where

α0, α1 are lower and upper bounds on the minimum
altitudes among root tiles, D is an absolute constant
and C is a scalar depending on the worst aspect ratio
among root tiles. This means that a leaf tile can be
at most a factor log D/ log C (asymptotically) deeper
in the forest than any other leaf tile. Thus, all leaves
have depth O(log n).

Finally, the Delaunay triangulation operations in the
last step of the algorithm also require O(n log n) op-
erations total. Overall, we see that PINW requires
O(n log n) operations.



7. ANALYSIS OF ASPECT RATIO

In this section we analyze the aspect ratios of triangles
produced by PINW, showing that they are bounded
above by a number that depends only on the sharpest
angle in the original polygon Ω. Before this analy-
sis, we first explain how to select the parameter δ de-
scribed in the last section. The parameter δ depends
on the minimum altitude of leaf tiles as will be ap-
parent from the theory developed here. Let minalt(T )
denote the minimum altitude of triangle T .

Lemma 2. Let T be a triangle with vertices v1, v2, v3.
Let T ′ be the triangle with vertices v′

1, v2, v3. Let A be
the unique affine transformation that carries T to T ′.
Let l be an arbitrary line segment. Then

1 − d/a ≤ length(A(l))

length(l)
≤ 1 + d/a (1)

where d = dist(v1, v
′
1) and a is the altitude of v1 with

respect to v2v3.

This result follows in a fairly straightforward manner
from a well-known theorem about how the singular
values of a matrix change under perturbation.

Lemma 3. Consider the generalized pinwheel subdi-
vision illustrated in Figure 3 of a triangle T . Assume
that b ≥ min(.4, a) and c − a ≥ min(.4, a). Then let-
ting T ′ be any one of the five subtriangles, we have
minalt(T ′) ≤ 0.9725minalt(T ).

Remark 1. The assumptions are valid for all tiles
produced by PINW. For root tiles, we have ordered the
angles a ≤ b ≤ c, and we know c−a ≥ .4 because of the
preliminary step of splitting near-equilateral triangles.
For conjugates of root triangles, say a = a′, b = c′−a′,
and c = π − c′ where a′, b′, c′ are the angles of a root
tile, we know also c−a = π− c′−a′ = b′ ≥ a and that
b = c′ − a′ ≥ .4.

Remark 2. The factor 0.9725 is due to our proof
technique and appears to be an overestimate. A search
over a fairly dense grid of possible angles satisfying
the hypotheses of the theorem indicates that the true
bound is closer to 0.918.

Proof. Due to space limitations, we merely sketch out
the main ideas of the proof. Using the law of sines and
the assumptions, we prove many inequalities about the
side lengths in Figure 3 such as |BC| ≤ .922|AB|.
With enough inequalities like this, we can then argue
using principles of similar triangles about the mini-
mum altitude.

The following lemma is like the previous one except
with an inequality in the opposite direction.

Lemma 4. Consider the generalized pinwheel subdi-
vision illustrated in Figure 3 of a triangle T . Assume
that b ≥ min(.4, a) and c − a ≥ min(.4, a). Then let-
ting T ′ be any one of the five subtriangles, we have
minalt(T ′) ≥ p minalt(T ), where for subtriangles I, II,
III, IV, p ≥ 0.0044 and for subtriangle V, p ≥ sin a.

Remark. The factor 0.0044 is due to our proof tech-
nique and appears to be an underestimate. A search
over a fairly dense grid of possible angles satisfying
the hypotheses of the theorem indicates that the true
bound is closer to 0.125.

Due to space limitations, the proof is omitted.

Lemma 5. Let s, t be positive numbers such that s <
1 and t < 1, and let k a positive integer. Then

∞∏
i=0

(1 − sti)k ≥ 1 − ks/(1 − t)

and
∞∏

i=0

(1 + sti)k ≤ exp(ks/(1 − t)).

We now explain how to choose δ for the main algo-
rithm. We set it to be

δ =
min{minalt(T ) : T ∈ T∗}

1460
. (2)

The minimum altitudes in this definition are measured
before any collapse-node operations begin. This choice
of δ makes all the theorems work but leads to poorer
aspect ratio (by a constant factor) than seems nec-
essary. So instead, PINW 1.0 chooses δ dynamically
based on the singular values of the affine transforma-
tions that could be applied during collapse-node oper-
ations. This heuristic seems to work well in practice.

The following theorem bounds the effect of all collapse-
node operations, both direct and indirect.

Theorem 5. Let T be a tile in the hierarchy gener-
ated by PINW, and let A be the composition of all the
affine tranformations applied directly to vertices of T
and indirectly to those vertices via ancestors in the hi-
erarchy. Let α = minalt(T ) (prior to any node move-
ment). Let l be a line segment lying in T . Assume δ is
chosen according to (2). Then length(A(l))/ length(l)
lies between
(

1 − δ

0.75α

)3

·
(

1 − 0.9725δ

0.75α

)3

·
(

1 − 0.97252δ

0.75α

)3

· · ·

and
(

1 +
δ

0.75α

)3

·
(

1 +
0.9725δ

0.75α

)3

·
(

1 +
0.97252δ

0.75α

)3

· · ·



Due to space limitations, we defer the proof of this
theorem to the full paper.

We now consider Properties 1 and 2 in Section 6. Since
the minimum altitude of a triangle is less than or equal
to its shortest side length, and since the minimum alti-
tude of any tile decreases by at most 0.75, the previous
result shows that δ is sufficiently small so that no two
nodes can be collapsed to the same node, and no node
can have more than one choice of where it should be
collapsed.

Furthermore, when we are finished with collapse-node
operations, all hanging nodes are at least δ apart and
at least δ from corners. Again, this is because the
shortest side length is bounded below by the smallest
altitude, and the smallest altitude is bounded below
by a large constant multiple of δ.

We now consider the aspect ratio of the triangles in
the mesh produced by PINW. We define the aspect
ratio of a triangle to be the square of the longest side
length of the triangle divided by its area. Since the
area is half the product of the longest side length and
the minimum altitude, an equivalent definition is twice
the longest side length over the minimum altitude.

The first step of PINW, which performs a preliminary
triangulation of Ω using Triangle, outputs triangles
that have their aspect ratios bounded above. The rea-
son is that Triangle is a guaranteed-quality mesh gen-
eration algorithm that will put sharp angles into its
output only when the input polygon has very sharp an-
gles. Thus, the small angles of all the initial triangles
have a lower bound. (The reciprocal of the smallest
angle of a triangle is within a constant factor of the as-
pect ratio definition given in the previous paragraph.)
The operation of subdividing at in-centers done to ob-
tain T0 from Triangle’s output does not increase the
longest side length, and reduces the area by at most
a constant factor. Hence the triangles in T0 still have
bounded aspect ratio.

Next, we consider the tiles in Tf , that is, the leaf tiles.
Each of these is similar to a root tile or its conjugate.
In a preliminary step, we ensured that c−a is bounded
below for all conjugates of root tiles. Therefore, the
leaf tiles all have bounded aspect ratio.

In more detail, the smallest angle of each conjugate
leaf tile is either a, where a is the smallest angle of a
root tile, or is c − a, where a is the smallest and c is
the largest angle of a root tile. But we have ensured
that c−a > .4 by our preliminary splitting rule. Thus,
if the smallest angle of a conjugate tile is c − a, this
means that the conjugate tile has a universal upper
bound on its aspect ratio.

Now, we consider the effect of collapse-node opera-
tions.

Lemma 6. After all collapse-node operations are
complete, the aspect ratio of any leaf tile has increased
(compared to its value prior to all collapse-node oper-
ations) by at most a factor of 1.22.

For this theorem and the remainder of the section,
let R1 denote the maximum aspect ratio among root
tiles and their conjugates. As noted above, because
of the properties of Triangle, R1 is bounded above by
a constant multiple of the reciprocal of the sharpest
angle of Ω.

Theorem 6. Assume that no root tile is in Tf (i.e.,
each triangle in T0 is split at least once by the PINW
subdivision procedure). Then, prior to collapse-node
operations, the maximum value of the minimum alti-
tude among all leaf tiles is no more than cR1 times
the minimum value of the minimum altitude among
all leaf tiles, where c is a universal constant.

Proof. Recall that the tile selected for splitting at any
given step is the one with the maximum minimum al-
titude. Thus, when the subdivision procedure termi-
nates, the tile at the top of the heap will be the leaf
tile with the maximum minimum altitude among all
leaf tiles. Say this tile is T and its minimum alti-
tude is α. Now consider any other leaf tile T ′ ∈ Tf .
Because of the assumption that no tile from T0 is a
leaf tile, this tile T ′ must have arisen from a subdi-
vision of some other tile T ′′. Because of the heap
order, the minimum altitude α′′ of T ′′ exceeds α.
By Lemma 4, this means that the minimum altitude
α′ of T ′ is at least min(0.0044, sin a)α′′. Note that
sin a ≥ c/R1 since a is an angle of a root tile. Thus,
α′ ≥ (c/R1)α

′′ ≥ (c/R1)α.

We now come to the main result for this section about
the aspect ratio of the triangles generated by PINW.

Theorem 7. Each triangle in the simplicial mesh out-
put by PINW has aspect ratio at most cR3

1, where c is
a universal constant and R1 was defined above to be
the largest aspect ratio among root tiles.

Due to space limitations, we omit the proof. In brief,
the idea is that we consider the sharpest angle of a
triangle τ in the Delaunay triangulation. There are
two cases: either the edge e = v1v2 opposite the sharp
angle lies on an edge E of T or it connects two edges
of T . Consider only the first case. We can bound
the sharp angle of τ by the sharp angle v1vv2 of the
triangle τ ′ resulting from joining e to v, where v is the
vertex of T opposite E. We find that the aspect ratio
of τ ′ is proportional to R3

1. One factor of R1 arises
because |e|/ diam(T ) ≥ c/R1. The other two factors
of R1 arise because if R1 is large, v could make a large
angle (close to π) with e.



8. ISOPERIMETRY OF THE FINAL
MESH

We have already proved in Theorem 3 that the tiling
of a triangle by our generalized pinwheel subdivision
has the isoperimetric property. It is straightforward
to extend this result to the collection of all leaf tiles.

Theorem 8. Let T0, T1, . . . , be the sequence of tilings
of Ω generated by the PINW algorithm as follows. For
each n, Tn is the set of leaf tiles of Ω generated by
PINW when the user-specified size requirement is δn

such that δn → 0 as n → ∞. Then for any distinct
points P, Q such that P, Q ∈ Skel(Tk) for some k, we
have

lim
n→∞
n≥k

dist
Skel(Tn)

(P, Q) = ‖P − Q‖.

Proof. This theorem follows from Theorem 4 and uses
the same proof technique. In particular, for each tile
Ti in Tk that meets PQ, consider the small segment
PiQi that is Ti ∩ PQ. Then we use Theorem 3 to ar-
gue that this small segment PiQi can be approximated
arbitrarily accurately.

This theorem can now be extended to the final mesh
output by PINW by analyzing the effect of collapse-
node operations on the isoperimetric number. (The
Delaunay operations do not disturb the isoperimetry
result, since adding edges could only make the isoperi-
metric number decrease.)

The definition of isoperimetry implicit in Theorems 4
and 8 is not suitable for analyzing the output of PINW
because the meshes produced by PINW are not re-
finements of their predecessors as the mesh size de-
creases. This is because the collapse-node operations
move nodes differently depending on the size of the
leaf tiles.

Therefore, we use the following definition. An infinite
sequence of simplicial meshes M1,M2, . . . for a do-
main Ω has the isoperimetric property if for each Mi

there is a subset Li of its vertices such that the fol-
lowing two properties hold. First, Li is asymptotically
dense in Ω as i → ∞, i.e., for any ε > 0, there is an I
such that for any x ∈ Ω and any i > I, there exists a
v ∈ Li such that ‖x − v‖ ≤ ε. Second,

lim
i→∞

sup

{
distSkel(Mi)(x, y)

‖x − y‖ : x, y ∈ Li; x = y

}
= 1.

Theorem 9. The family of meshes produced by the
PINW algorithm has the isoperimetry property de-
scribed in the previous paragraph.

Proof. To show that PINW has this property, take a
sequence of εi’s tending to zero. For each i, let Ti

be a generalized pinwheel subdivision of Ω such that
each leaf cell has diameter less than εi/2. Then let
T ′

i be a further subdivision of Ti such that for any
two distinct vertices of Ti, distSkel(T ′

i )(x − y) ≤ (1 +

εi/4)‖x−y‖. The existence of such an T ′
i is established

by Theorem 8. Let α′ be the minimum altitude among
leaf tiles in T ′

i . Next, further refine T ′
i to yield a tiling

T ′′
i with the property that when δ is defined by (2)

for T ′′
i , (i.e., the T∗ appearing in (2) pertains to T ′′

i ),
then this δ is sufficiently small so that

exp(3δ/(0.75α′(1 − 0.9725))) ≤ 1 + εi/4 (3)

and

1 − εi/4 ≤ 1 − 3δ/(0.75α′(1 − 0.9725)). (4)

Now finally, take Mi to be the simplicial mesh output
by PINW based on T ′′

i , and take Li to be the set of
nodes of Mi that are displaced copies of the nodes of
Ti.

First, we have to show that Li defined in this manner
is asymptotically dense. The nodes of Li are the same
as the nodes of Ti after small displacements. Since
every cell of Ti has diameter less than εi/2, this means
that any point x ∈ Ω is distance at most εi/2 from a
vertex of Ti. The vertices of Li are slightly displaced,
but no distance d decreases below 0.9d nor increases
to more than 1.09d. Therefore, for any x ∈ Ω the
perturbed set Li contains a point v within distance
1.09 · εi/2 < εi of x.

Let x, y be two distinct points in Li. The next task
is to show that distSkel(Mi)(x, y) ≤ ‖x − y‖(1 + εi).
Let x0, y0 be the positions of x, y in T ′′

i prior to all
distortions caused by collapse-node operations. Note
that x0, y0 are vertices of T ′

i and also of Ti by con-
struction. Therefore, by construction of T ′

i , there is a
path P0 in Skel(T ′

i ) connecting x0 and y0 such that
length(P0) ≤ ‖x0 − y0‖ · (1 + εi/4). Let the seg-
ments of P0 be e1, e2, . . . , er. Let the image of P0

after all the collapse-node operations with their at-
tendant distortions are applied be P , and the images
of e1, . . . , er be f1, . . . , fr. Recall that the distortions
that affect a node v of a tile T in the hierarchy are
those distortions associated with T and its ancestor
tiles, but descendant tiles cannot move T . Therefore,
by Theorem 5, all of the quantities ‖x− y‖/‖x0 − y0‖,
length(fi)/ length(ei), and length(P )/ length(P0) lie
between

(
1 − δ

0.75α′

)3

·
(

1 − 0.9725δ

0.75α′

)3

·
(

1 − 0.97252δ

0.75α′

)3

· · ·

and

(
1 +

δ

0.75α′

)3

·
(

1 +
0.9725δ

0.75α′

)3

·
(

1 +
0.97252δ

0.75α′

)3

· · ·



where the δ in this formula is given by (2) associated
with T ′′

i . By Lemma 5, this interval is bracketed by

1 − 3
δ

0.75α′(1 − 0.9725)

and
exp(3δ/(0.75α′(1 − 0.9725))).

Then by (3) and (4), this interval is bracketed by [1−
εi/4, 1 + εi/4]. Thus,

dist
Skel(Mi)

(x, y) ≤ (1 + εi/4) dist
Skel(T ′

i )
(x0, y0)

≤ (1 + εi/4)2‖x0 − y0‖
≤ (1 + εi/4)2‖x − y‖/(1 − εi/4).

Note that (1 + εi/4)2/(1 − εi/4) ≤ 1 + εi as long as
εi ≤ 1/2. Thus, we have shown that for all x, y ∈ Li,
distSkel(Mi)(x, y) ≤ (1 + εi)‖x − y‖.

9. CONCLUSIONS

We believe that this generalization of pinwheel tiling
to meshing polygonal regions would aid in modeling
arbitrary crack paths more accurately than the cur-
rent meshing techniques. This work raises a number
of interesting directions for future research:

1. The transformation of the tiling to the mesh had
the effect of increasing the aspect ratio signifi-
cantly. Is there a better way to carry out this
transformation to reduce the impact on aspect
ratio?

2. The convergence rate of the isoperimetric num-
ber of the pinwheel tiling to 1, which was not an-
alyzed here, is known to be extremely slow even
in the case of the 1:2 tiling. Is there another ap-
proach to isoperimetry that converges faster?

3. Consider a mesh generated by placing random
points in the domain under consideration and
joining them with a Delaunay triangulation. Is
there a limiting isoperimetric number for this
family of meshes (with high probability)?

4. Another way to construct a mesh of an arbitrary
polygon with limiting isoperimetric number equal
to 1 is to use the 1:2 pinwheel subdivision for ev-
ery coarse triangle after subjecting it to a (poten-
tially large) affine transformation. This approach
is simpler in certain respects than PINW. For ex-
ample, the collapse-node operations for this algo-
rithm need to be done only at the boundaries of
the coarse triangles. The difficulty with this ap-
proach is that it spoils the “statistical rotational
invariance” of the pinwheel tiling. The statistical
rotational invariance property states that the set

of possible directions is covered at a uniform rate
as subdivision proceeds. We are unclear whether
statistical rotational invariance is important for
cohesive interface modeling. We suspect that our
construction of generalized pinwheels has statis-
tical rotational invariance but have no proof of
this.

5. Can any of this work be extended to three dimen-
sions?
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