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ABSTRACT

A great challenge for flow simulators of new generation is to gain more accuracy at well proximity within complex
geological structures. For this purpose, a new approach based on hybrid mesh modeling was proposed in 2D in [1]. In
this hybrid mesh, the reservoir is described by a structured quadrilateral mesh and drainage areas around wells are
represented by radial circular meshes. In order to generate a global conforming mesh, unstructured transition meshes
constituted by convex polygonal elements satisfying finite volume properties are used to connect together these two
structured meshes. Thus, the resulting mesh allows us to take full advantages of simplicity and practical aspects of
structured meshes while complexity inherent to unstructured meshes is introduced only where strictly needed.
This paper presents the 3D extension of the generation of such a hybrid mesh [2]. The proposed method uses 3D
power diagrams to generate the transition mesh. Due to the round off errors, this mesh is modified in order to ensure
the conformity with the structured meshes. In addition, some criteria are introduced to measure the mesh quality, as
well as an optimization procedure to remove and to expand small edges of the transition mesh under finite volume
properties constraints. Numerical results are given to show the efficiency of the approach.
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1. INTRODUCTION

Nowadays, the new technological progress in 3D seis-
mic imagery and drilling/production permits to obtain
a realistic and faithful image of the internal architec-
ture of the reservoir and to drill deviated and complex
3D wells with several levels of ramification. Nowadays
well trajectories can be well adapted to the geometry
of the reservoir in order to optimize its production. In
this new technological context, the mesh generation
becomes a crucial step in the reservoir flow simula-
tion of new generation. Meshes allow us to describe
the geometry of the geological structure with a repre-
sentation in discrete elements on which the simulation
is processed. A better comprehension of the physi-
cal phenomena requires us to simulate 3D multiphase
flows in increasingly complex geological structures, in

the vicinity of several types of singularities such as
complex wells. All these complexities must be initially
taken into account within the mesh construction. The
mesh must faithfully represent all this heterogeneous
information.

The current industrial standard meshes, based on Cor-
ner Point Geometry (CPG) grids already showed their
limits. They are very practical and easy to use, but
they fail to represent complex objects due to their
structured aspect. More recently, other approaches
have been proposed in particular the PErpendicular
BIssector (PEBI) grids which are completely unstruc-
tured. They are obtained using Voronöı diagrams that
are derived from Delaunay triangulations. These grids
are very flexible and can model most complex shapes.
But, they are often difficult to use and to understand



in 3D, because they are difficult to visualize and to
explore from the inside, due to their lack of structure.
In [3], a new hybrid mesh model was proposed in 2D
to capture the radial characteristics of the flow around
the wells. It combines the advantages of the structured
and unstructured approaches, while limiting their dis-
advantages. The hybrid mesh is composed of a struc-
tured quadrilateral mesh describing the reservoir field,
structured radial meshes adapted locally to flow di-
rections around each well and unstructured polygo-
nal meshes (based on power diagrams) connecting to-
gether the two structured meshes.

In this paper, the generation of the hybrid mesh is
extended in 3D. In Section 2, we present the numeri-
cal constraints imposed by finite volume schemes that
will govern the mesh construction. Section 3 recalls
the methodology used to generate a hybrid mesh in
2D. In Section 4, we describe briefly some known facts
related to Delaunay and regular triangulations. Sec-
tion 5 is devoted to the 3D extension of such a hybrid
mesh taking into account mesh conformity problems.
In Section 6, three criteria to measure the mesh qual-
ity as well as an optimization procedure based on these
criteria are introduced. In Section 7, some numerical
results are given.

2. STATEMENT OF THE PROBLEM

The proposed hybrid mesh model is composed of a
structured CPG grid, respecting the geological fea-
tures to describe the reservoir field, a structured ra-
dial circular mesh adapted locally to the radial nature
of the flows around the wells to gain accuracy at the
drainage areas and an unstructured polyhedral mesh
preserving finite volume properties to connect together
the above structured meshes.

While the structured grid generation is a well known
process, the construction of the unstructured tran-
sition mesh in 3D represents a major issue. The
structured CPG mesh of the reservoir grid is con-
structed through the use of transfinite interpolations,
projections onto the geological interfaces (horizons and
faults) combined by a relaxation procedure [4]. The
structured radial mesh is computed by using the well’s
trajectory, the drainage area radius and the progres-
sion of cells’ size. The separate construction of these
grids leads to incompatibilities due to a lack of com-
mon structure and a transition mesh is needed to per-
form a correct connection. For accurate simulation
purposes, the transition mesh must verify the follow-
ing numerical requirements:

• convexity: each polyhedral element (cell) is con-
vex,

• conformity: any two adjacent cells share a unique

face,

• dual orthogonality: the line joining the centers
of two adjacent cells is orthogonal to the shared
face,

• auto-centering: the site (or center) of each cell
lies inside the cell.

In order to generate such a transition mesh, a new
method using power diagrams [5, 6] was introduced in
[1]. As a generalization of Voronöı diagrams [7, 8],
power diagrams provide convex polyhedra verifying
the above orthogonal property. In addition, these al-
low here to reach the mesh conformity between the
transition mesh and structured meshes which would
not be generally possible using Voronöı diagrams. The
goal of this work is to extend the construction of the
transition mesh based on power diagrams into 3D.

3. METHODOLOGY IN 2D

Given a reservoir mesh, a well mesh is first introduced
at a specific position (Figure 1 on the left). The two
meshes are then superimposed and a cavity between
the well and the reservoir is defined by deactivating
certain cells of the reservoir (Figure 1 on the right).
These cells cut well mesh elements or contain an edge
with a diametral circle containing a well mesh vertex
or contain a vertex belonging to the diametral circle of
a well mesh edge. Finally, the boundary edges of the
cavity (which constitute the boundary of the transition
mesh) are extracted. The problem is now to construct
a power diagram whose cells exactly fit the cavity and
whose external edges correspond to the edges of the
cavity boundary (the constrained edges).

Figure 1: Definition of a cavity between the well and the
reservoir.

The construction scheme is the following:

• The Delaunay triangulation1 of the cavity ver-
tices is generated (Figure 2 on the left). All cav-
ity edges belong to the triangulation (Delaunay

1The Delaunay triangulation of a set S of points in Rd

(d = 2 or 3) is such that the open circumballs of its simplices
contain no point of S.



Figure 2: Determination of the weighted points of the cavity and construction of the corresponding power diagram.

admissibility property) as their diametral circles
are empty.

• For each constrained edge e of the cavity, two
weighted points (P1, ω1) and (P2, ω2) are deter-
mined on the Voronöı edge associated with e, one
inside the cavity and the other outside of the cav-
ity (Figure 2 in the middle).

• Finally, the power diagram having as sites the in-
ternal weighted points of the cavity is generated
(Figure 2 on the right). This diagram is the ex-
pected transition mesh.

4. DELAUNAY AND REGULAR
TRIANGULATIONS

4.1 Delaunay triangulation

The Delaunay triangulation can be introduced in vari-
ous ways (according to the context of the application).
One of those is to use its dual: the Voronöı diagram.

Let S = {P1, . . . , Pn} be a set of points in R3. The
Voronöı diagram of S is the set of cells Vi defined by:

Vi = {P ∈ R3 | ‖−−→PPi‖ ≤ ‖−−→PPj‖,∀j �= i} (1)

Each cell corresponds to a point Pi of S and is the set
of its closest points in R3 with respect to other points
of S .

From the Voronöı cells of S , the dual can be con-
structed in order to give the expected Delaunay tri-
angulation. In particular, faces of Voronöı cells, which
are equidistant from the two points they separate, de-
fine the mediating planes of the edges of the trian-
gulation. In other words, the expected triangulation
is obtained (or more exactly the edges of this one)
by joining vertices of S which belong to two adja-
cent cells. When points of S are in general position2,

2A set of points is said to be in general position when
there is no configuration of more than four cocyclical
points.

the obtained triangulation is unique and is composed
of tetrahedra. Otherwise, non-simplical elements are
constructed; they can subsequently be subdivided into
tetrahedra (giving rise to more than one triangulation
for the same set of points).

4.2 Regular triangulation

Weighted point: Let P be a point in R3 and let ω
be a scalar called the weight of point P . The weighted
point (P, ω) is the sphere of center P and radius ω.

Power: The power of a point X with respect to a
weighted point (P, ω) is given by:

Π(X, (P, ω)) = ‖−−→PX‖2 − ω2 (2)

Power product: The power product of two weighted
points (Pi, ωi) and (Pj , ωj) is defined by:

Π((Pi, ωi), (Pj , ωj)) = ‖−−→PiPj‖2 − ω2
i − ω2

j (3)

Notice that if the weight ωi is equal to zero, the power
product Π((Pi, ωi), (Pj , ωj)) = Π(Pi, (Pj , ωj)) is the
power of the point Pi with respect to the weighted
point (Pj , ωj).

The weighted points (Pi, ωi) and (Pj , ωj) are said to
be orthogonal if their power product is equal to zero.

Radical plane: The radical plane of two weighted
points (Pi, ωi) and (Pj , ωj) is the locus of points in
R3 whose power with respect to (Pi, ωi) is equal to its
power with respect to (Pj , ωj).

Power sphere: The power sphere of four weighted
points (Pi, ωi), (Pj , ωj), (Pk, ωk) and (Pl, ωl) is the
unique sphere (P, ω) which is orthogonal to each of
these weighted points.

Power diagram: Let SW = {(P1, ω1), . . . , (Pn, ωn)}
be a set of weighted points where each Pi is a point in
R3 and each ωi is the weight of point Pi. The power



diagram of S is the set of cells Vi defined by:

Vi = {X ∈ R3 | Π((Pi, ωi), X) ≤ Π((Pj , ωj), X), (4)

∀(Pj , ωj) ∈ SW, j �= i}

Each cell corresponds to a weighted point (Pi, ωi) of
SW and is the locus of points P in R3 whose power
with respect to (Pi, ωi) is less than its power with re-
spect to any other weighted point (Pj , ωj) of SW. The
power diagram extends the notion of Voronöı diagram
in the sense that a Voronöı diagram is a power diagram
of equally weighted points. Notice, however, that a
weighted point can have no cell (or more exactly an
empty cell) in the power diagram of SW.

Regular triangulation: From the power cells of
SW, the dual can be constructed in order to give the
expected regular triangulation. In particular, faces of
power cells, which have an equal power with respect
to the two weighted points they separate, define the
radical planes of the edges of the triangulation. In
other words, the expected triangulation is obtained (or
more exactly the edges of this one) by joining vertices
of SW which belong to two adjacent cells (Figure 3).
When weighted points of SW are in general position3,
the obtained triangulation is unique and is composed
of tetrahedra. Otherwise, non-simplical elements are
constructed; they can subsequently be subdivided into
tetrahedra (giving rise to more than one triangulation
for the same set of points).

Figure 3: Power diagram (on the left) and the corre-
sponding regular triangulation (on the right).

The regular triangulation extends the notion of Delau-
nay triangulation since a Delaunay triangulation is a
regular triangulation whose weights are all equal.

4.3 Construction scheme

Delaunay and regular triangulations can be con-
structed in various manners (for example, from their
duality with Voronöı and power diagrams). Among
the whole of existing methods, the incremental method
(also known under the name of Watson algorithm [9])

3A set of weighted points is said to be in general position
when there is no configuration of more than four weighted
points having an equal power with respect to the same point
X ∈ R3.

seems to be the best adapted to our problem as it can
also be applied to the regular triangulation [10].

The following results are established for the Delaunay
triangulation but remain valid for the regular trian-
gulation by replacing the circumscribed spheres of the
tetrahedra by their power spheres.

Incremental method: Let S be a set of points in R3.
Let Ti be the Delaunay triangulation of the convex
envelope of the first i points of S and let P be the
(i + 1)th point of this set.

The goal of the incremental method is to construct
Ti+1, the Delaunay triangulation of the first (i + 1)
points of S , from the triangulation Ti, such that P
is vertex of elements. For this purpose, the Delaunay
kernel is introduced as follows [11]:

Ti+1 = Ti − CP + BP (5)

where CP is the polytope constituted by tetrahedra
whose circumballs contain point P and BP is the set
of tetrahedra formed by joining P to the external faces
of CP .

From a practical point of view, the significant and di-
rectly usable result is that the cavity is a star-shaped
polytope with respect to the point P .

5. CONSTRUCTION OF THE
TRANSITION MESH IN 3D

In 3D, the generation of the hybrid mesh is extended
to reservoirs described by non-uniform cartesian grids.
The problem is first to define a cavity which is Delau-
nay admissible and then to construct a 3D power dia-
gram whose external faces fit exactly the constrained
quadrilaterals constituting the cavity boundary.

5.1 Cavity definition

In order to obtain a cavity whose faces belong to tetra-
hedra of the Delaunay triangulation of the cavity ver-
tices, the Gabriel condition could be verified by the
well and the reservoir meshes. This condition (which
is a strong condition ensuring the Delaunay admissi-
bility) can be defined as follows: Let Ec be a set of
vertices and edges, an edge of Ec is said to be Gabriel
if its diametral sphere contains no points of Ec.

The edges of the cartesian hexahedral mesh of the
reservoir satisfy the Gabriel condition. This implies
that the facets of the reservoir mesh are Delaunay ad-
missible.

On the other hand, the well mesh is not necessarily
Gabriel (Figure 4 on the left). In particular, in certain
configurations, some edges, located on the extremities
of the well, do not satisfy the empty diametral sphere



property. In this case, the well mesh is not Gabriel
and some of its facets may not appear in the Delaunay
triangulation of its vertices. Such a well can however
be modified in order to become Gabriel. Actually, the
number of well subdivisions can be increased in the
θ direction (Figure 4) or segments of a sphere can be
added, one on each extremity of the well (Figure 5).

Figure 4: Non-Gabriel well mesh (on the left) and Gabriel
well mesh (on the right).

Figure 5: Well mesh without and with a segment of a
sphere.

Therefore, the cavity is said to be Gabriel and so De-
launay admissible if the diametral sphere of each edge
of the reservoir contains no point of the well and if the
diametral sphere of each edge of the well contains no
point of the reservoir.

In order to define a Delaunay admissible cavity that
makes it possible to generate a transition mesh whose
size is intermediate between the mesh size of the well
and the reservoir, a local coefficient of expansion α
(depending on the local mesh size of the well and the
reservoir) is introduced and the well is dilated accord-
ing to this coefficient. Cells of the reservoir intersect-
ing the image of the dilated well are then deactivated
(Figure 6). The boundary of the cavity is extracted.
It consists of constrained quadrilaterals which are the
limit of the transition mesh to construct.

5.2 Delaunay triangulation of the cavity
vertices

In order to determine the Voronöı edges of the cav-
ity quadrilaterals (as the quadrilateral faces have four
co-circular vertices), a Delaunay triangulation of the

Figure 6: Cavity definition between the well and the
reservoir meshes.

bounding box of the cavity vertices is generated using
an incremental method [11, 12].

5.3 Search of the tetrahedra attached to
the boundary cavity quadrilaterals

Since the cavity is Delaunay admissible, constrained
quadrilaterals of the cavity are shared by tetrahedra
of the Delaunay triangulation of the cavity vertices (at
most four, two inside and two outside of the cavity). In
particular, the constrained quadrilaterals of the cavity
are subdivided into two triangles and these triangles
are facets of tetrahedra of the triangulation.

Let Q be a quadrilateral defined by vertices A, B, C
and D. The four tetrahedra T1in, T2in, T1out and T2out

which are attached to the quadrilateral Q and which
are respectively inside (in) and outside (out) of the
cavity, are found using the following process:

1. Explore the ball4 of vertex A to find a tetrahedron
T0 shared by the edge [AB].

2. Explore the shell5 of edge [AB] to find a tetrahe-
dron T1 shared by the triangular face (A, B, C)
or (A, B, D). Let f be this triangular face, let
eA be the edge of f opposite to vertex A and let
i be the vertex of the tetrahedron T1 such that
i /∈ f .

3. If i is also a vertex of the quadrilateral Q, the
considered tetrahedron is a sliver6. In this case,
the four required tetrahedra are the four neigh-
boring tetrahedra of T1: two of them are inside

4Let P be a vertex of a mesh, the ball associated to P
is the set of elements having P as vertex.

5Let e be an edge of a mesh, the shell associated to e is
the set of elements having e as edge.

6A sliver is a tetrahedron having a volume practically
null formed by 4 co-circular vertices.



the cavity and the two others are outside of the
cavity.

4. Else, T1 is one of the required tetrahedra: if T1 is
inside the cavity then T1in = T1 else T1out = T1.
The search of the tetrahedron T2 adjacent to T1

and opposite to vertex i allows us to determine
the complementary tetrahedron:

(a) If T2 is a sliver, the required tetrahedra are
the four neighboring tetrahedra of T2.

(b) Else, if T1 is inside the cavity then T1out =
T2 else T1in = T2.

5. If 4.(b), explore the shell of edge eA to find a
tetrahedron T3 having the fourth vertex of Q as
vertex.

6. If T3 is a sliver, the required tetrahedra are the
four neighboring tetrahedra of T3.

7. Else, the tetrahedron T3 is one of the required
tetrahedra: if T3 is inside the cavity then T2in =
T3 else T2out = T3. The search of the tetrahe-
dron T4 adjacent to T3 allows us to determine
the complementary tetrahedron:

(a) If T4 is a sliver, the required tetrahedra are
the four neighboring tetrahedra of T3.

(b) Else, if T3 is inside the cavity then T2out =
T4 else T2in = T4.

Figure 7 illustrates the different stages of the algorithm
which permit to find the two tetrahedra attached to
the face (A, B, C) of the quadrilateral Q.

A

D

C

B

A

D

C

B

A

D

C

B

C

D

A

B

Figure 7: Search of the two tetrahedra sharing the face
(A, B, C) (stages 1., 2. and 4.(b)).

5.4 Cavity sites definition

Tetrahedra attached to each constrained quadrilateral
of the cavity (as defined above) allow us to define the
Voronöı edges associated to the cavity quadrilaterals
and thus to determine the cavity sites. In the gen-
eral case, for each constrained quadrilateral, two sites
are defined along its Voronöı edge, one inside and one
outside of the cavity. When Voronöı edges of several
quadrilaterals are intersecting, only one site is deter-
mined for all of these quadrilaterals. In particular, it
happens when several quadrilaterals of the cavity be-
long to the same (inactive for internal sites or active
for external sites) reservoir cell.

5.4.1 Internal sites definition

Let (P, ω) be an internal site of the cavity and let
Q = {Q1, . . . , Qn} be the set of constrained quadrilat-
erals associated with this site. The Voronöı site V as-
sociated with the quadrilaterals of Q is the barycenter
of the circumcenters {O1, . . . , Ont} of the nt internal
tetrahedra attached to the quadrilaterals of Q. The
spatial coordinates of (P, ω) depend on the number of
quadrilaterals n associated with the site. If n > 1, P is
equal to V which is the only point of intersection of the
dual edges of the quadrilaterals of Q (Figure 8 on the
left). Otherwise, P is obtained by calculating the mid-
point of the segment [OV ] where O is the circumcenter
of the quadrilateral Q1 (this point is well defined as the
vertices of the quadrilateral are co-circular). Actually,
this position gives good results (Figure 8 on the right).

P = V P

V

Figure 8: Position of the sites when n = 2 (on the left)
and when n = 1 (on the right).

The weight ω (Figure 9) is the radius of the sphere of
center P passing through its nc constrained vertices
{A1, . . . , Anc} (4 ≤ nc ≤ 8). Thus, if the constrained
quadrilaterals associated with (P, ω) are co-circular, P
is exactly equidistant from its constrained vertices; the
weight ω is then defined in an exact way by calculat-
ing the distance between P and one of its constrained
vertices, for example A1. On the other hand, if the
constrained quadrilaterals associated with (P, ω) are
not co-circular, the weight ω is approximated by the



average distance between P and its nc constrained ver-
tices. In this case, problems of mesh conformity can
occur (see 5.7).

PP

ww

Figure 9: Weight ω of the sites.

5.4.2 External sites definition

The method used to determine the external sites of
the cavity is somewhat different from the method de-
scribed previously. Indeed, if the number n of quadri-
laterals associated with the site is equal to one, this
quadrilateral can be on the convex envelope of the cav-
ity. In this case, there is no external tetrahedra (of the
Delaunay triangulation) attached to the quadrilateral.
The external site (P, ω) is then obtained by symmetry
of the internal site (P ′, ω) with respect to the circum-
center O of the quadrilateral. In all the other situ-
ations (when n > 1), the method described in 5.4.1
remains valid.

5.5 Cavity sites validation

At this stage, a set of internal and external cavity sites
has been defined. They guarantee the existence of a
3D power diagram which is orthogonal and which is in
conformity with the constrained quadrilaterals of the
cavity (if however the vertices of those quadrilaterals
are co-circular and coplanar). Unfortunately, since the
cavity sites are defined in an independent way, some
empty or non auto-centered power cells may occur. In
order to prevent such a thing, the mutual interaction
between the cavity sites must be taken into account.
A correction procedure modifying the position of cer-
tain sites via the correction of their weight, is thus
proposed.

5.5.1 Auto-centering condition

Let (Pi, ωi) and (Pj , ωj) be two sites and let Γij be
their radical plane, i.e. the locus of points having equal
power with respect to (Pi, ωi) and (Pj , ωj). The power
cells associated with (Pi, ωi) and (Pj , ωj) are auto-
centered if these two sites are on both sides of Γij .
The necessary and sufficient condition for the radical
plane Γij cuts the segment [PiPj ] is:

∣∣ω2
i − ω2

j

∣∣ ≤ ‖−−→PiPj‖2 (6)

5.5.2 Sites adjustment

Let (Pi, ωi) and (Pj , ωj) be two sites and let Γij be
their radical plane such that

∣∣ω2
i − ω2

j

∣∣ > ‖−−→PiPj‖2, i.e.
such that the sites are located on the same side of Γij .
The site located outside of its cell is found inside if the
radical plane Γij is moved until being between (Pi, ωi)
and (Pj , ωj). Two solutions are possible. The first
consists in modifying the weight of one of the sites,
i.e. the radius of the sphere associated with the con-
sidered site (Figure 10). The second simply consists in
moving one of the sites. This modifies the position of
the intersection of the spheres associated with the sites
and thus the position of the radical plan. However, in
our case, the weight of a site is related to its position
(the weight ω, associated with the point P , is equal to
the average distance between P and the constrained
vertices associated with the site). Thus, the weight
cannot be modified without moving the site, and the
site cannot be moved without modifying the weight.
A combination of the two above process is then neces-
sary. Actually, the site, whose weight is maximum, is
moved along its Voronöı edge by bringing it closer to
its constrained quadrilateral until the condition (6) is
satisfied (Figure 11).

Figure 10: Weight modification of one of the sites.

(Pj, ωj)

(Pi, ωi)

Γij
Qi

Qj

(Pj, ωj)

Γij
Qi

Qj

(Pi, ωi)

Figure 11: Moving a site via the correction of its weight.

5.5.3 Correction algorithm

The correction algorithm checks the condition (6) for
all of the sites and modifies them if required. The
cavity sites are corrected as follows:

1. Initialize the correction number n to zero.

2. For each site of the cavity (Pi, ωi), find the set of
sites (Pj , ωj), j �= i such that ‖−−→PiPj‖2 ≤ ω2

i . For



all pair ((Pi, ωi), (Pj , ωj)), evaluate the difference∣∣ω2
i − ω2

j

∣∣. If it is greater than ‖−−→PiPj‖2, incre-
ment n. If (P, ω) is the site whose weight is max-
imum, move P along its Voronöı edge by bring-
ing it closer to its constrained quadrilateral. In
particular, if O is the circumcenter of the quadri-
lateral associated with (P, ω), P = O + α

−−→
OP

(0.7 ≤ α < 1) and ω is updated by the same
occasion.

3. If n > 0, go to 1.

The new spatial configuration of the cavity sites sat-
isfies the finite volume properties constraints that
are convexity, orthogonality, conformity and auto-
centering. The power diagram of the sites can then
be generated.

5.6 Power diagram of the cavity sites

In order to construct the expected transition mesh, the
3D regular triangulation of the cavity sites is gener-
ated using an incremental method [10]. The expected
power diagram (or more exactly the faces of this one)
is obtained by joining the power centers of the tetra-
hedra belonging to the shell of the same edge (Figure
12).

Figure 12: Transition mesh.

5.7 Mesh conformity

At this stage, the generated power diagram is orthogo-
nal, auto-centered and theoretically in conformity with
the quadrilaterals of the cavity. Unfortunately, be-
cause of numerical imprecisions and because of the
presence of some non-co-circular quadrilaterals on the
boundary of the deviated wells, this conformity is not
guaranted. It is thus necessary to modify some vertices
and some faces of the power diagram in order to ensure
the mesh conformity. The algorithm used to solve this
problem is based on topological notions and consists in
identifying the external face(s) of the transition mesh
with the corresponding constrained quadrilateral(s).
In particular, if SC = {S1, . . . , Snc} (4 ≤ nc ≤ 8) is
the set of constrained vertices associated with the cell
V , V is made in conformity as follows:

• Examine the set of faces of V and determine
PF = {P1, . . . , Pnv} the set of vertices situated
on the external faces of V .

• For each vertex P ∈ PF , find the nearest con-
strained vertex S ∈ SC and replace P by S (Fig-
ure 13).

This algorithm is applied to all of the transition cells
and the data structure is updated (removal of multiple
vertices in the same face and removal of faces whose
number of vertices is lower than 3). The resulting
transition mesh is then in conformity with the well
and the reservoir meshes (Figure 14).

Figure 13: Example of a transition cell made in confor-
mity (removal of 5 vertices and 3 faces).

Figure 14: Transition mesh made in conformity.



6. OPTIMIZATION OF THE
TRANSITION MESH

Mesh optimization is an operation frequently applied
with various objectives and numerous applications.
In particular, optimization is interesting because the
quality of the numerical solutions (convergence of the
numerical schemes, precision of the results) obviously
depends on the quality of the computational mesh. For
this reason, mesh generation methods are generally
completed by an optimization procedure that consists
in improving the quality of the mesh. In this section,
the quality of a hybrid mesh is introduced as well as
an optimization procedure that removes and expands
small edges of the transition mesh under quality con-
trol and under finite volume properties constraints.

6.1 Definition of quality criteria

The quality or the shape of an element V is a real value
measuring its geometrical aspect. Our interest for this
quality concept comes from the fact that the solution
of a simulation using finite volumes schemes is directly
related to the quality of the elements composing the
mesh. In fact, in the literature, there are a lot of
possible criteria to measure the quality of triangles
and tetrahedra but none of them is really adapted to
measure the quality of polyhedric cells. Three criteria
allowing us to measure the quality of the transition
mesh can be defined: a shape quality criterion QS, an
orthogonality criterion QO and a planarity criterion
QP .

6.1.1 Shape quality criterion

The first quality measure QS of a transition cell V is
given by:

QS(V ) = min
i=1..nv

(
li
h

,
h

li

)
(7)

where li is the length of the ith edge of the cell and h is
the reference length associated with V which is equal
to the average length of the constrained quadrilaterals
edges associated with V . This quality measures per-
fectly the shape or the aspect of an element according
to the reference mesh size of the well and the reser-
voir. It varies from 0, the degenerated cell having a
null edge, to 1, the regular polyhedric cell.

6.1.2 Orthogonality criterion

This criterion makes it possible to measure the orthog-
onality of two adjacent cells by calculating the angle
(in degrees) defined by the segment joining the cen-
ters of the cells and the plane formed by their shared
face. The orthogonality measure QO of a face F is

then given by:

QO(F ) = arcsin

∣∣∣∣
−−−→
P1P2

‖−−−→P1P2‖
· �n

∣∣∣∣ ×
180

π
(8)

where �n is the normal to F and P1 and P2 are the
centers of the two adjacent cells located on both sides
of F . The orthogonality QO varies from 0◦, the de-
generated face, to 90◦, the perfectly orthogonal face.
The orthogonality QO of a cell V is then defined by
the minimal orthogonality of its faces, it is expressed
by:

QO(V ) = min
F∈V

QO(F ) (9)

6.1.3 Planarity criterion

This criterion, specific to the 3D space, is used to
measure the planarity of the faces of the transition
mesh. Let F be the face made up of the ver-
tices {A1, . . . , Anv} and let G be the barycenter of
this face. By dividing F into nv triangles Ti =
(G, Ai, Ai+1)i=1..nv , the planarity measure QP (in de-
grees) of F is given by:

QP (F ) = max
i=1..nv

arccos |�n · �nTi | ×
180

π
(10)

where �n is the normal to F and �nTi is the normal
to the triangle Ti. The planarity QP varies from 0◦,
the perfectly planar face, to 90◦, the crinkled face.
The planarity QP of a cell V is then defined by the
maximal planarity of its faces, it is expressed by:

QP (V ) = max
F∈V

QP (V ) (11)

6.2 Optimization

The hybrid mesh construction method generates very
small edges and faces which are due to:

• inherent problems related to the method, based
on power diagrams which intrinsically can gener-
ate very small edges and faces. However this can
involve instabilities in numerical simulations and
consequently be harmful with the reservoir flow
simulations,

• mesh conformity problems related to the pres-
ence of constrained quadrilaterals made of non-
co-circular vertices.

Considering the fact that small faces are very difficult
to eliminate, the optimization procedure consists in
removing and expanding small edges of the transition
mesh under quality controls (small faces are then re-
moved in an implicit way). Such an optimization de-
creases the orthogonality and the planarity qualities



of the transition mesh. Three controls are then intro-
duced to validate the modification of an edge under
finite volume properties constraints:

• an orthogonality control: a transition cell is said
to be orthogonal if its orthogonality QO is greater
or equal to a given threshold ΩO (actually 80◦ ≤
ΩO ≤ 90◦).

• a planarity control: a transition cell is said to be
planar if its planarity QP is lower or equal to a
given threshold ΩP (actually 0◦ ≤ ΩP ≤ 10◦).

• an auto-centering control: a cell is said to be
auto-centered if its center lie inside this one.

Because of the presence of numerical imprecisions,
some transition cells are not initially orthogonal
(QO(V ) ≤ ΩO) and (or) planar (QP (V ) ≥ ΩP ). To
take into account these specifications, orthogonality
and planarity thresholds are defined for each transi-
tion cell. Actually, if a cell V is not initially orthogo-
nal, its orthogonality threshold ΩO(V ) is equal to its
initial orthogonality. Its orthogonality threshold can
then improve if the modification of one of its edges
improves its orthogonality.

6.2.1 Removal of small edges

Let a and b be the vertices of a small edge. Let Ba

and Bb be respectively the balls of the vertices a and
b and let Ba∩b be the intersection of Ba and Bb.

1st case: a and b are not constrained vertices.

Let Ba∪b be the union of Ba and Bb and let c be the
midpoint of the edge [ab]: c = a+b

2
. The edge [ab]

is removed and replaced by the vertex c (Figure 15) if
and only if the cells of Ba∪b are orthogonal, the cells of
Ba∪b are planar and the cells of Ba∩b are auto-centered.

a b
V1 V3

V2

V4

c

Figure 15: Removal of the edge [ab] when a and b are
not constrained vertices.

2nd case: a is a constrained vertex.

The edge [ab] is removed and replaced by the vertex a
(Figure 16) if and only if the cells of Bb are orthogonal,

the cells of Bb are planar and the cells of Ba∩b are auto-
centered.

a b
V1 V3

V2

V4

Figure 16: Removal of the edge [ab] when a is a con-
strained vertex.

6.2.2 Expansion of small edges

When an edge is expanded, all its incident edges are
reduced. A control must then be added in order to
ensure the improvement of the shape quality of the
transition cells which are modified by this expansion.

Let a and b be the vertices of a small edge and let α
be a coefficient of expansion such that 1 < α ≤ 1.1.
Let Ba and Bb be the balls of the vertices a and b.

1st case: a and b are not constrained vertices.

Let Ba∪b and Ba∆b be respectively the union and the
symmetrical difference of Ba and Bb and let ã = a −
α−1

2

−→
ab and b̃ = b+ α−1

2

−→
ab. The edge [ab] is expanded

and replaced by the edge [ãb̃] (Figure 17) if and only
if the cells of Ba∪b are orthogonal, the cells of Ba∪b

are planar, the cells of Ba∆b are auto-centered and the
average shape quality of the cells of Ba∪b is better.

V1 V3

V2

V4

ba
b̃ã

Figure 17: Expansion of the edge [ab] when a and b are
not constrained vertices.

2nd case: a is a constrained vertex.

Let Bb−a be the difference of Bb and Ba and let b̃ = b+
α−1

2

−→
ab. The edge [ab] is expanded and replaced by the

edge [ab̃] if and only if the cells of Bb are orthogonal,
the cells of Bb are planar, the cells of Bb−a are auto-
centered and the average shape quality of the cells of
Bb is better.



6.2.3 Optimization procedure

Since the modification of an edge degrades the orthog-
onality and the planarity qualities of the transition
cells, the optimization procedure is iterative and con-
sists in modifying in priority very small edges. The
procedure is the following:

• In order to eliminate problems due to numerical
imprecisions, very small edges whose size is lower
than a given threshold Γ1 (actually 0 < Γ1 ≤ 5%)
are first removed without control.

• Then, edges whose size is lower than a second
given threshold Γ2 (actually Γ1 ≤ Γ2 ≤ 40%)
are removed under finite volume properties con-
straints.

• Finally, edges whose size is lower than a third
given threshold Γ3 (actually Γ2 ≤ Γ3 ≤ 50%) are
expanded under shape quality control and finite
volume properties constraints.

Figure 18 illustrates the removal and the expansion of
some edges of the transition mesh.

Figure 18: Transition mesh before and after optimiza-
tion.

7. RESULTS

In this section, some numerical results are presented
to show the efficiency of the optimization procedure.
In order to have a coherent intention, the tested ex-
ample is the same as the one presented all along this
paper. In order to improve the shape quality of this
transition mesh, the ortogonality threshold ΩO is fixed
to 85◦ and the planarity threshold ΩP is fixed to 10◦.
Edges whose size is lower than 5% are first eliminated
without control. Then, edges whose size is lower than
30% are removed under finite volume properties con-
straints. Finally, edges whose size is lower than 40%
are expanded under shape quality control and finite
volume properties constraints. The results are sum-
marized in Figure 19 and in Table 1 and 2.

Before After
optimization optimization

Number of vertices 5030 2746
Number of faces 6116 4434
Number of cells 744 744

Table 1: Number of faces and vertices of the transition
mesh before and after optimization.

Table 1 shows the number of faces and vertices of the
transition mesh before and after the optimization pro-
cedure. In this example, 30% of the faces and 45% of
the vertices are removed which is significant.

Figure 19: Shape quality evolution of the transition cells.

Figure 19 shows a histogram representing the evolu-
tion of the shape quality of the transition cells be-
fore and after optimization. While the majority of the
transition cells had initially a shape quality contained
between 0 and 0.1, they have now a better shape qual-
ity contained between 0.1 and 0.4.

Before After
optimization optimization

min. 0.00 0.06
QS max. 0.71 0.71

average 0.06 0.25

min. 71.36◦ 85.00◦

QO max. 89.99◦ 89.99◦

average 89.78◦ 86.06◦

min. 0.00◦ 0.00◦

QP max. 70.54◦ 10.56◦

average 7.05◦ 7.62◦

Table 2: Qualities evolution of the transition mesh.

Finally, Table 2 shows the minimal, the maximal
and the average value of each quality. The proposed
method seems to be efficient. The average shape qual-
ity was increased from 0.06 to 0.25. While a lot of



degenerated cells were present in the initial transition
mesh, only two cells have a planarity which is con-
tained between 10◦ and 10.56◦ and do not respect the
planarity threshold. These two cells have however a
reasonable planarity.

In other respects, the hybrid mesh construction
method allows us to insert several wells in the same
reservoir mesh. When two or more wells are too close
to each other, the corresponding cavities can merge
and give rise to only one transition mesh for all these
wells. Figure 20 illustrates the case of a hybrid mesh
where three radial circular grids around deviated wells
are inserted in a non-uniform cartesian reservoir grid.
The three radial grids are connected to the reservoir
grid by the use of two transition meshes.

Figure 20: Hybrid mesh composed of one reservoir, three
wells and two transition meshes.

8. CONCLUSION

In this paper, a 3D extension of the hybrid mesh pro-
posed in [3] has been presented. The method uses 3D
power diagram in order to generate a global conform-
ing mesh between a reservoir, described by a hexa-
hedral cartesian non-uniform grid, and drainage areas
around wells, represented by radial circular meshes.
Hence, the efficiency of structured grids is kept while
accuracy is improved at the drainage areas. Robust
and efficient algorithms have been implemented to
generate such a transition mesh, taking into account
problems of mesh conformity in 3D. In the meantime,
some criteria have been introduced to measure the
mesh quality, as well as an optimization procedure to
remove and to expand small edges of the transition
mesh under quality controls and finite volume proper-
ties constraints.

The proposed method allows us to take into account
cartesian reservoir meshes. However, it can not be
applied to real CPG reservoir grids. The future exten-
sion consists in considering the geometry of the CPG
grids by using anisotropic metrics. This demands to
extend all the proposed procedures (in particular the

Delaunay and regular triangulations) to the general
anisotropic case.
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2004. Jyväskylä, Finland, 24-28 July 2004

[3] Balaven S., Bennis C., Boissonnat J., Yvinec M.
“Conforming Orthogonal Meshes.” 11th Inter-
national Meshing Roundtable. Ithaca, New York,
USA, september 2002

[4] Bennis C., Sassi W., Faure J., Chehade F. “One
more step in gocad stratigraphic grid generation:
Taking into account faults and pinchouts.” SPE,
editor, European 3-D Reservoir Modeling Confer-
ence. Stavanger, Norway, 1996

[5] Aurenhammer F. “Power diagrams: properties,
algorithms and applications.” SIAM J. Comput.,
vol. 16, no. 1, 78–96, 1987

[6] Imai H., Iri M., Murota K. “Voronoi diagrams
in the Laguerre geometry and its applications.”
SIAM J. Comput., vol. 14, no. 1, 69–96, 1985

[7] Aurenhammer F. “Voronöı diagrams: a sur-
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