

A NEW TYPE OF SIZE FUNCTION
RESPECTING PREMESHED ENTITIES

Jin Zhu

Fluent, Inc. 1007 Church Street, Evanston, IL, U.S.A. jz@fluent.com

ABSTRACT

This paper describes the creation of a new type of size function – the mesh size function that honors the existing mesh on premeshed
geometry entities and radiates the mesh sizes from the premeshed source entities to the attached entities – from the technology of
using background overlay grids. The creation of faceted meshes from premeshed source entities (i.e. edges or faces) is presented in a
more general way, which allows the use of existing procedure of size function implementations. The introduction of the mesh size
function has greatly enhanced the capabilities of the three types of size functions that were already available (including a fixed size
function, a curvature size function and a proximity size function) and provided nice solutions to the situations where the old size
functions did not work desirably. Meshing results of the new size function with controlled mesh sizes are given.

Keywords: mesh generation, size control, size functions, background grid.

a
b

c d e f g
h

i
j

kl

a
b

c d e f g
h

i
j

kl

1. INTRODUCTION

As everyone knows, the mesh size control is very critical to
mesh quality and to the successful field simulations using the
generated mesh. The mesh sizes need to catch local small
geometry features, and then are smoothly transitioned into
the nearby areas of the geometry unless they reach the given
size limit. Various methods have been used by different
researchers to set up size functions to automatically detect
the geometric features and put appropriate mesh size at
desired locations, thus eliminate the need of manually locate
the local features of the geometry and mesh these entities by
desired sizes [1-7]. The background overlay grid size
functions that were developed in our previous work
illustrated satisfactory performance in mesh size control [8].
However, sometimes creating a mesh that is radiated in a
controlled manner from some premeshed boundaries of the
domain can also be an efficient way of obtaining desired
mesh transition and gradation. The mesh on premeshed
boundaries can come from manual operations as desired, but
more often it comes from the meshing results of other size
functions, or even from imported geometry. In the following,
we will list some problems that would be encountered during
the meshing processes by using the size function capabilities
that had existed, and demonstrate the necessity of creating a
new mesh size function.

Figure 1 An airfoil geometry split and used as the
sources of a fixed size function

of the sources. It is not acceptable to define a constant size
along all the airfoil edges. It is necessary for this problem to
cluster meshes at the leading edge, at an approximate shock
location along the upper surface, and at the trailing edge.
Using the current size function implementation, it is required
to define at least 6 size functions to cluster elements at the
desired locations and then grow the elements away from the
airfoil surfaces. One size function uses vertex a as source,
and other 5 size functions use edges bc , de , fg , hij and

kl , respectively, as sources. These edges can be part of the
airfoil surfaces. This is not a very convenient way and takes
some trial and error to get desirable mesh clustering at the
airfoil surfaces.

A much more convenient and better approach will be to mesh
the edges (that represent the surfaces of the airfoil) separately
and cluster the edge nodes using the standard edge meshing
bunching functionality. Then, have a size function to use
those edges as sources and the existing (and varying) mesh
sizes at those edges as the initial mesh size. The mesh
elements are then allowed to grow using the user specified

In the first place, let’s take the case of meshing a 2D airfoil
as an example, as displayed in Figure 1. The initial mesh size
of a fixed size function is defined as a constant value
specified by the user. This works for many cases where
uniform sizes at the location of the sources are desired.
However, for other cases such as the one in Figure 1, it
requires that non-uniform mesh sizes be used at the location

ratio and size limit. Note that this concept can be extended
into 3D meshing, in which case the size function will take the
existing mesh on source faces as the initial size.

Volume.2

Volume.1

Volume.2

Volume.1

For another example, the geometry in Figure 2(a) contains
two volumes, exterior volume volume.1 and interior volume
volume.2. Four size functions are created (growth rate = 1.2,
size limit = 2, cells-per-gap = 3 for proximity size function
and angle = 25 for curvature size function) and attached to
the geometry as follows:

Proximity size function sfunc.1:

source: volume.1

attachment: volume.1

Curvature size function sfunc.2:

source: all faces of volume.1 (a) Geometry containing two volumes
attachment: volume.1

Proximity size function sfunc.3:

source: volume.2

attachment volume.2

Curvature size function sfunc.4:

source: all faces of volume.2

attachment: volume.2

Suppose volume.1 is meshed first and volume.2 second.
Then the common face between volume.1 and volume.2 is
meshed according to the size functions attached to both
volumes. Since the size functions attached to volume.1 give
smaller mesh sizes than the size functions attached to
volume.2, so the mesh on the common face is dominated by
sfunc.1 and sfunc.2 (actually by proximity size function
sfunc.1), instead of sfunc.3 and sfunc.4. However, when
meshing volume.2, the mesh size is purely controlled by the
two size functions attached to volume.2, which will conflict
with the meshes generated on the common face, thus causes
size jump inside volume.2 or even generates un-usable
meshes. (See Figure 2 (b))

(b) Meshes with big size variation

Figure 2 Problems with old size functions for two
similar volumes, one being enclosed by another

Since size functions attached to the upper topology will also
affect its lower topologies, same problem will occur even if
volume.2 is meshed first. Here the key issue is that the mesh
size on the common face is controlled by four size functions
from two sharing volumes, whereas the mesh size in each
volume is controlled only by two size functions associated
with it.

The mesh size on the common face of above model in Figure
2 is nearly constant. For the similar geometry shown in
Figure 3 where the common face has varying sizes due to the
changing curvature and gap distance from volume.2, same
mismatching of mesh sizes will be encountered.

As one can expect that it is hard to determine which size
functions are the dominant ones that give the smallest mesh
size on the entities to be meshed. To avoid a poor mesh being
generated, a workaround for the above scenario is to attach
the size functions in a crossing way, that is, also attach size
functions sfunc.1 and sfunc.2 to volume.2 and, similarly,

Figure 3 Problems with old size functions for two
connected volumes that are not similar

 For some mesh schemes, the mesh sizes determined by size
function have to be adjusted so that the scheme can work.
For example in a mapped face, the mesh sizes on opposite
paired edges have to be increased or decreased so that their
mesh intervals match each other. In Figure 4, there are two
faces, face.1 and face.2, connected through common edge
ab . The edge at the left-most side is used as source edge of a
fixed size function, and a start size of 0.1 and growth rate of
1.2 are specified. The fixed size function is attached to both
the left face face.1 and right face face.2. When face.1 is
meshed with the map scheme, the mesh sizes on the common
edge of the two faces are decreased (i.e. smaller mesh size
than computed by the fixed size function) in order to match
the mesh intervals on the opposite paired edge which is also
the source edge of the fixed size function. Later, when face.2
that is adjacent to face.1 is meshed with the triangle/pave
scheme, the mesh size obtained from the defined size
function will be very different from the existing mesh on the
common edge, causing big size jump near the common edge.

Source

edge

Source

edge

a

b

Source

edge

Source

edge

a

b

Figure 4 Size jump on the right face from adjusted
uniform edge mesh

Source
vertex

a

b

Source
vertex

a

b

Figure 5 is similar to Figure 4, but now the source entity is
the upper-left vertex, therefore the mesh distributions on the
common edge ab are non-uniform. Suppose face.1 on the left
side is first map meshed. When the right face is meshed with
either the map scheme (Figure 5 (a)) or the quad/pave
scheme (Figure 5 (b)), great size variation can be observed.

From above illustrations it can be seen that the face or
volume meshed first will have great (and usually adverse)
impact on the mesh quality of the face or volume across the
common boundary that is meshed later and whose attached
size functions can not match or smoothly transition the mesh
sizes on the premeshed common boundary. It is difficult, if
not impossible, to handle the mesh size conflict across the
common boundary by using existing size functions, nor by
specifying additional sources to them, because existing size
functions can only measure the mesh sizes of their sources
based on curvature, proximity and fixed sizes, but they can
not evaluate their sources by means of existing meshes on the
sources that may have arbitrary and variable mesh size
distributions that are non-predictable before hand.

 (a) Mapped mesh on right face

Suppose we can define a new size function for the case in
Figure 4 and Figure 5 in such a way that it can use the
common edge as source entity and be attached to the face.2.
This size function is valid only when its source entity has
existing mesh when being evaluated. Then this new size
function will dominate its attached face and give smaller
sizes than previously defined fixed size function in its
affected area, so that the mesh size from the existing mesh on
the source edge will be grown into the neighboring face.2
and the mesh on face.2 will be improved significantly. This
fact suggests that we should create a new type of size
function to address this awkward situation to ensure smooth
transition across the common edge of different mesh
domains. More than just growing the mesh size from
boundary into the interior of mesh domain, the definition of
this new size function will help to resolve the mesh size
conflict that may occur across the common boundaries of
adjacent mesh domains.

(b) Quad-paved mesh on right face

Figure 5 Mesh size inconsistencies from
premeshed edge with non-uniform adjusted mesh

sfunc.3 and sfunc.4 to volume.1. The drawback of this
method will be that the bounding box for the background
grid will be inevitably larger, which usually uses longer time
and larger memory for the background grid to be generated.

Sometimes, imported face or edge meshes that were
generated from outside the meshing product need to be

preserved and used in the creation of a mesh for a geometry
model. Figure 6 demonstrates such a case where face “A” has
imported mesh that needs to be taken into account in the
generation of volume mesh. It is required that the new mesh
grows smoothly from the imported mesh into the rest of the
domain of the geometry. None of the previously
implemented size functions in our meshing product can
satisfy this kind of requirement, thus the mesh size function
to be presented in this paper is indispensable for this purpose.

• Growth rate: This parameter controls the geometric
pace with which the mesh on the premeshed source
entities is grown into affected areas.

• Size limit: This is the maximum mesh size. When the
grown size at the given location exceeds the size limit,
this limit is used instead.

In our previous implementation, all the size functions require
a specific parameter, respectively, to define the mesh sizes on
the source entities for initialization purpose. In the definition
of the mesh size function, the existing meshes on the source
entities are directly used as starting sizes, so only the
common parameters list above will be enough for its
definition.

AA

3. SIZE FUNCTION INITIALIZATION

In preparation for the generation of the background grids, all
types of size functions must be initialized differently. This
initialization establishes the desired sizes everywhere on the
sources. For old size functions, it is needed to generate a
reasonable faceted representation of the source entities and
then an ideal mesh size is computed for each piece of facet
and stored in it.

For the mesh size function, however, we directly use the
meshes on the source edge or source face as input. For a
meshed edge source, each element of the edge mesh is
converted into an edge segment and the length of the
segment represents the local mesh size on that edge. An edge
segment holder is used to store all the edge mesh segments
associated with the premeshed geometry edge. For a meshed
face source, we convert each triangle element of the face into
a facet and pass the size information of that triangle element
to the facet. If the source face has quadrilateral elements,
each quad element is split into two triangle elements each of
which is converted into a facet of the source face. The mesh
size of a face facet is computed as the averaged length of the
three sides of its original triangular element from which it is
converted. A face facet holder is used to store all the face
mesh facets associated with the premeshed geometry face.

Figure 6 Mesh creation from imported mesh

The goal of this work was to create a new type of size
function, named as mesh size function, which respects the
existing mesh on premeshed source entities, controls the
mesh size growth from premeshed source entities to the
attached entities and at the same time, like other size
functions we already had, provides very rapid evaluators that
would be general for any meshing algorithm.

This paper describes how this new type of size function is
implemented using a background overlay grid. The work will
be presented by comparing this new size function with old
ones, and their differences being emphasized. Application
examples of this new size function are given. When evaluating the mesh size at a point in the space, the

point is first projected to a selected edge segment (for edge
source case) or face facet (for face source case). If the
projection is valid, the mesh size stored in that edge segment
or face facet is taken as the start size and then grown to the
given point, according to specified growth rate of the mesh
size function.

2. DEFINITIONS OF SIZE FUNCTIONS

As in our previous implementations, the new mesh size
function is also based on a distance-controlled radiation. The
parameters that are common to all size functions are used for
the new mesh size function too. They are:

4. BACKGROUND GRID GENERATION
• Source entities: Edges or faces that have existing
meshes are used as geometric entities. When the mesh
size function is defined, the source entities may not have
meshes, but they should have meshes available in order
to be valid in meshing the attached entities.

4.1 Improved procedures of establishing mesh
sizes at nodes of background grid
As a result of the size function initialization, the desired size
on all sources is known. The next step is to establish the
complete background grid, realized by the refining process.
This procedure was described in detail in our previous work
[8] and will not be listed here. The only difference is that at
each corner node, the background grid will also use the mesh
size radiated from the mesh size functions and compare it

• Attached entities: The attached entities on which the
mesh size function will have influence include edge, face
or volume. For mesh size function, usually the attached
entity is different from the source.

with all other mesh sizes obtained from old size functions,
when applied together.

pS = (1 - γ) + nS γ 1+nS

The final size is the smallest one of the defined size limit and
the all computed sizes (if a corner point is affected by several
size functions).

However, when establishing values at the background grid
nodes, an improvement can be made regarding the approach
of growing the mesh size from the source entity to a given
point. Previously, we used an interactive procedure to
determine the spacing at a given point as influenced by a
particular source. Using the prescribed geometric growth
factor, 'g', we essentially "march" to the desired point from
the source, applying the growth factor at each interval and
summing the result. Rather than iterate in this fashion, the
desired mesh size can be obtained by analytically summing
the terms of the geometric series given as

4.2 Improvement to projections to source
entities under way
According to our statistics obtained from timing the profile
of size function creation, it is found that the bottleneck of the
size function speed is the projection of the corner nodes of
background grid to the faceted source entities, which counts
for about 90% of the total time. The remaining time is spent
for other operations such as growing the initial mesh size on
source entities to a given point along the distance, inserting
newly computed mesh size into a sorted list, and getting
mesh size at a shared point from the list. The most time used
for projection is spent in searching the best facet to project
the node. An investigation in improving the projection
process is being under way which tries to project a list of
nodes in one background grid to the best facets at the same
time. This approach will significantly reduce the time in
background grid generation once successfully realized.

 = (is the spacing at the source, n ≥ 0) nS 0S ⋅ ng 0S

The distance from the source entity to the given point is the
sum of mesh sizes at incremental intervals except for the first
mesh size on the source, and then the proper terms of the
series can be listed as:

nR = 1−nR g (n > 0)

0R = 0 (n = 0)

Or in full expression:

Geometry Entities

SF Definition

Initializations

BG Grid Generation

Meshing Tools

Fixed Curvature Proximity Mesh

Source Attachment

Evaluator

Geometry Entities

SF Definition

Initializations

BG Grid Generation

Meshing Tools

Fixed Curvature Proximity Mesh

Source Attachment

EvaluatorEvaluator

0R =0, =1R 0S ⋅ g , = , ... =2R 0S ⋅ 2g nR 0S ⋅ ng

Knowing the Euclidean distance (R) from the source to the
node in question, we can sum all the items in the series until

, so that we can then directly solve for the exponent as
follows:
nR

nR = (- 1) / (g - 1) - 0S ng 0S

ng = / + R ()1−g 0S g

 = ln (/ +n R ()1−g 0S g) / (ln g)

Finally we take the integer part of the obtained n value.

n = () int n

which can then be used to immediately evaluate the spacing
at the node without the need for iteration. The desired point
will locate within the region between two subsequent
distances and from source that are measured at
incremental steps n and n+1, respectively. Then the
following condition can be satisfied:

nR 1+nR

 nR ≤ R 1+≤ nR

This would simplify the evaluation of and speed up the
calculation.

nS

A linear interpolation between the two bounding distances is
accomplished by this equation

γ = (R -) / () nR nn RR −+1 Figure 7 Flow chart of the size function
applications

Here (0 ≤ γ ≤ 1). The actual size, S , at the given point, ,
is computed as:

p P

4.3 Flow chart of the background grid size
function approach
No matter what types of the size functions to use, except for
the differences in initializations, the same procedures will be
followed when apply these size functions to the meshing
processes. The following chart in Figure 7 illustrates the
general procedures we used in the meshing processes for all
meshing schemes. After defined, the size functions are
attached to the geometric entities via a specially designed
data structure. Initialization of size functions is triggered if
any of the attached entities or their lower topologies is being
meshed. The background grid generation for the attached
entities follows the initialization process, creating a specific
set of background grid for each group of entities that have
identical size functions attached. The established background
grid serves as an evaluator providing mesh size information
to the meshing process. After entering the meshing session,
the mesh size at a given point is evaluated quickly through
tri-linear interpolations in a background cell into which the
point falls. By the returned mesh size value, the next mesh
node is placed along certain direction.

5. EXAMPLES

A few examples are given below to show the application of
the new mesh size function or its combination with other
types of size functions in the meshing process. Smooth
meshes that were unable to be generated before have been
generated due to the introduction of the new mesh size
function.

5.1 Updated meshing results for co-centric
volumes
Figure 8 is the updated meshing results of the example in the
beginning of this paper (see Figure 2). To prevent the size
jump in the interior volume.2, a mesh size function is created
that uses the common face as source and is attached to the
interior volume. In order for the mesh size function to be
useful to its attachment, the exterior volume.1 should be
meshed first in this case, so that the common face inherits its
meshes from the meshing process of exterior volume before
interior volume.2 is meshed, thus the mesh size function
using the common face as source can be valid for use in
meshing volume.2.

Figure 9 gives the new meshing results corresponding to
Figure 3. Similarly to Figure 8, the meshes of the interior
volume are radiated nicely from the common face, although
the meshes on common face have varying degrees of sizes
than in the previous case.

5.2 Remeshed results for connected faces
Next, referring to Figure 4, we have defined a second mesh
size function that uses the common edge of the two
connected faces as source and attach it to the face on the
right side (see Figure 10). Since the mesh size function has
smaller size distributions everywhere in the right face than
the original fixed size function and so will dominate the
mesh size selection in the whole domain of the right face, the

tri/pave algorithm will use the mesh size from the mesh size
function to position nodes, forming smooth mesh transitions
from the common edge and across the whole face on face.2.
The adjustment to the mesh distributions on the common
edge does not deteriorate the mesh quality on the right face
any more.

Figure 8 Remeshed results from Figure 2 when
mesh size function is applied

Figure 9 Remeshed results from Figure 3 when
mesh size function is applied

Similar results to the above have been obtained in Figure 11
for the case displayed in Figure 5 where the initial size
function start from the upper-left vertex, instead of the left-
most edge as in Figure 4. No matter the right face is meshed
with the map scheme (Figure 11 (a)) or the quad/pave
scheme (Figure 11 (b), the meshes on the face are grown in
such a way that you will not notice any sudden changes of
mesh sizes near the common edge and it looks like the whole
meshes are smoothly radiated from the same upper-left
vertex without size jumping.

5.3 New meshing results for volumes with
imported face mesh

face or created from the imported face (e.g. by sweeping the
given face along specified path) within Gambit product, will
be meshed according to the user’s specification. Figure 12(a)
shows the mesh on the boundary surface of the volume after
the meshing process is finished, and Figure 12(b) is the
internal mesh patterns of the volume. A growth rate of 1.2 is
used in the definition and the size limit is large enough not to
be reached within the domain of the model.

We discussed the impossibility of generating a volume mesh
that is required to radiate from the imported face mesh and
concluded that there was no easy way of doing it with the old
size function capabilities in our mesh sizing tool. However,
with the realization of the mesh size function, this task
becomes very easy. Simply specify the face “A” having
imported mesh as the source face (see Figure 6) and specify
the volume to be meshed as attachment entity of the mesh
size function, and then start meshing the volume. The
volume, which could be imported together with the meshed

Figure 10 Mesh distributions on right face when
the common edge is used for mesh size function

(a) Mesh on boundary surface

(a) Mapped mesh on right face

(b) Internal volume mesh

Figure 12 Meshing results of volume using
imported face mesh as source

CONCLUSION

From the established method of size functions using the
background overlay grids, a new mesh size function has
been set up for controlling mesh sizes and radiation from
premeshed geometric entities (i.e. edges and/or faces). The
defined mesh size function has provided supplemental means
to assist all the meshing tools where the size functions that
were implemented previously sometimes could not meet the

 (b) Quad/paved mesh of right face

Figure 11 Mesh distributions on right face using a
mesh size function from the common edge

special needs. The details on how to construct the new mesh
size function has been described and its comparison with
other size functions presented. The proposed mesh size
function has been implemented in Gambit product, and its
efficiency has been illustrated by successful meshing
examples with satisfactory results.

REFERENCES

[1] Houman Borouchaki, Frederic Hecht and Pascal Frey,
Mesh gradation control, Proceedings of 6th
International meshing roundtable. Oct. 13-15, 1997.
Park City, Utah, USA.

[2] M.A. Yerry and M.S. Shepard, “A modified-quadtree

approach to finite element mesh generation”, IEEE
Computer Graphics Appl., Vol 3(1), pp.39-46 (1983)

[3] W. C. Tracker, “A brief review of techniques for

generating irregular computational grids”, Int. J.
Numer. Methods Eng. Vol 15, pp. 1335-1341 (1980)

[4] M. S. Shepard, Approaches to the automatic generation

and control of finite element meshes, Applied
Mechanics Reviews, Vol 41, pp. 169-185 (1988)

[5] Pascla J. Frey and Loic Marechal, “Fast adaptive

quadtree mesh generation”, Proceedings of 7th
International meshing roundtable. Oct. 26-28, 1998.
Dearborn, MI. USA.

[6] Shahyar Pirzadeh, “Structured background grids for

generation of unstructured grids by advancing-front
method”, AIAA Journal. Vol 31(2), pp. 257-265(1993)

[7] Steven Owen and Sunil Saigal, “Surface mesh sizing

control”, Int. J. Numer. Meth. Engng. Vol 47, pp. 497-
511(2000)

[8] J Zhu, Ted Blacker, Rich Smith, Background Overlay

Grid Size Functions, Proceedings of 11th International
Meshing Roundtable. pp65-73 (2002). Sept. 15-18,
2002. Ithaca, New York, USA.

	ABSTRACT
	1. INTRODUCTION
	2. DEFINITIONS OF SIZE FUNCTIONS
	3. SIZE FUNCTION INITIALIZATION
	4. BACKGROUND GRID GENERATION
	4.3 Flow chart of the background grid size function approach

	5. EXAMPLES
	5.1 Updated meshing results for co-centric volumes
	5.2 Remeshed results for connected faces
	5.3 New meshing results for volumes with imported face mesh

	CONCLUSION
	REFERENCES

