PARALLEL GENERATION OF UNSTRUCTURED
SURFACE GRIDS

Udo Tremel Frank Deister! Oubay Hassan? Nigel P. Weatherill?

LEADS, Munich, Germany {udo.tremel|frank.deister} ©m.eads.net
2University of Wales Swansea, Swansea, U.K. {o.hassan|n.p.weatherill} @swansea.ac.uk

ABSTRACT

In this paper a new grid generation system is presented for the parallel generation of unstructured triangular surface
grids. The object-oriented design and implementation of the system, the internal components and the parallel meshing
process itself are described. Initially in a rasterisation stage, the geometry to be meshed is analysed and a smooth
distribution of local element sizes in 3-D space is set up automatically and stored in a Cartesian mesh. This background
mesh is used by the advancing front surface mesher as spacing definition for the triangle generation. Both the
rasterisation and the meshing are MPI-parallelised. The underlying principles and strategies will be outlined together
with the advantages and limitations of the approach. The paper will be concluded with examples demonstrating the
capabilities of the presented approach.

Keywords: unstructured surface mesh generation, geometry rasterisation, MPI-parallel, automatic,

object-orientation

1. INTRODUCTION

The generation of unstructured surface grids is still
one of the most interactive tasks to be performed dur-
ing a numerical CFD analysis requiring a considerable
amount of human effort. For the complex configura-
tions currently in a routine use, the time to get a well
suited surface grid tends to become a bottleneck[1]
compared to the later stages such as volume mesh gen-
eration and numerical simulation. Two main reasons
can be identified causing this.

One problem is the preparation of the geometry def-
inition itself. Time constraints prohibit the detailed
examination and clean up of the full geometry. Due
to undetected and unrepaired features, failures gener-
ally occur during the meshing process. These errors
stipulate human repair and modification steps until
the geometry definition can be meshed successfully.
To accelerate this process, the response time of the
surface grid generator should be as short as possible.

The second reason is the, mostly interactive, defini-

tion of the local element sizes to be applied for dif-
ferent parts of the geometry. For example, for a well
suited aerodynamic surface grid the leading and trail-
ing edges have to be resolved accurately from the be-
ginning, compared to other regions such as fuselage
surfaces, etc. Even in the case of mesh adaptation
cycles during the simulation, the initial surface grid
should be able to resolve the major flow characteris-
tics, so that only a few adaptation steps are applied
in order to obtain an acceptable result. This implies
that reasonable element sizes have to be defined for
the (initial) surface grid. Standard means are tetra-
hedral background grids and sources[2] together with
octree-based approaches [3, 4]. For complex configu-
rations such as complete aircrafts, hundreds of sources
are not uncommon, imposing on the user hours of te-
dious work.

In the following sections a recently developed surface
mesh generation system is presented. Its objective is
to reduce the above mentioned problems as far as pos-
sible. The object-oriented design and implementation

is described first, followed by a section focusing on
the automatic definition of the local element sizes in
3-D space. In section 4 the parallelisation of the time-
consuming tasks is illustrated and in section 5 exam-
ples demonstrate the capabilities of the approach. The
paper is concluded by a summary.

2. OBJECT-ORIENTED DESIGN AND
IMPLEMENTATION

Based on the existing FLITE-ST surface mesh
generator[5] from the School of Engineering of the Uni-
versity of Wales Swansea, a new object-oriented (OO)
surface mesh generator system, the ST++-system, has
been developed at EADS M. The OO-methodology has
been choosen because the OO concepts of polymor-
phism, inheritance and encapsulation[6] [7] inherently
enable and support the building and maintenance of
large and complex software systems. Compared to
the procedural structured programming in, for exam-
ple, Fortran77 or C, the resulting code is generally
better understandable, maintainable, extensible and
reusable. This is caused by the powerful features sup-
ported in OO languages such as strongly typed inter-
faces, templates, design patterns, etc.[8] [9] C++ has
been selected as implementation language due to the
rich OO features the language offers’. Another reason
is the downward compatibility to C which enables the
integration and reuse of already available, validated
and highly optimised C and Fortran77/90 routines.

2.1 ST++-System Overview

In Figure 1 the three major components of the ST++-
system are shown. These objects interact together and

Geometry Groupings
Definition

Default | Sources
sconstant

« Point, Line,
Triangle, ...

Geometry <+——— Topology

Mesh Size
Specification ~ Background Grid
« Tetrah

i [/)
Points y Surfaces Vertices ¥y Faces
Edges edra

Curves

Cartesian Mesh
+ Octree-cells

Surface Mesher

Initial Front
7 Generator Advancing
Curve Front
Discretiser // Triangulator
..Advanclng Front
Enhancer
T

Volume Mesher

Figure 1: Surface mesh generator design.

IStrong type checks, single and multiple inheritance,
templates, abstract classes and interfaces, streams, excep-
tions, the standard template library (STL), ...

perform the following steps to generate a surface mesh:

1. The geometry definition imports the geometrical
and topological items from CAD data.

2. The mesh size specification initialises the pre-
scribed means to define the spacings.

3. The surface mesher starts the advancing front tri-
angulation of the geometry, controls the mesh en-
hancements and prepares and exports the surface
mesh later to be used in the volume mesh gener-
ation.

2.2 Geometry Definition

All the geometrical and topological entities are encap-
sulated in the geometry definition object illustrated
in Figure 2. The implemented boundary representa-

Geometry Definition

Geometry Topology <—— Groupings

4\
Points lSurfaces Vertices xFaces Groups § Tables
Curves Edges Attributes

Point Types Import Filter .
« 3-D cartesian point + STEP-Subset Operations
« IGES-Subset « Insert / Delete

o FLITES) « Extract

Curve Types « CENTAUR « CAD cleaning

« Line curve « Native binary « Connectivities

+ Ferguson curve Transform

+ NURBS curve Surface Types - State queries

« Trimmed curve « Plane surface /10

« Linear extrusion surface

« Ferguson surface

+ NURBS surface

« Rectangular trimmed surface Q

+ Trimmed surface
Surface Mesher

Figure 2: Geometry definition component.

tion (B-Rep) structure consists of geometrical points,
curves and surfaces referenced by topological vertices,
edges and faces respectively, defining the outer hull
of the body to be meshed. All types of items can be
grouped together and the grouping information can
be kept in multiple tables to allow non-unique iden-
tifiers>. Specific attributes can be assigned to each
group, which enables, for example, the use of dif-
ferent tolerances for the configuration and the outer
farfield parts. Import filters are available for the
industrial relevant data exchange formats STEP[10],
NASA-IGES]11] and the traditional FLITE format[5].

All the geometrical entities are derived from a generic
point, curve or surface object defining a common inter-
face for all derived types. For example, the following
methods are part of the interface for curves:

?Depending on the CAD database the geometry was
imported from.

e Evaluate(doubleT u, doubleT *outXYZ,
doubleT *outTangent=0)

e CalculateProjection(const doubleT *xyz,
doubleT &outlU)

e CalculateArcLength(doubleT ul, doubleT
u2, doubleT &outL)

Algorithms working only with such an abstract inter-
face are independent from the real mathematical rep-
resentation of the underlying parametric spline com-
posite curves and tensor-product surfaces. Imple-
mented are various types of curves and surfaces such as
Ferguson-splines[12], Bezier-splines[13] or NURBS[14].

For dynamic modifications the geometry definition ob-
ject offers methods for the insertion and deletion of
geometric entities, for the transformation of existing
entities, etc. One important capability is the extrac-
tion of arbitrary subgeometries, which is heavily used
by the parallel mesher to extract subparts transmitted
to and meshed by another process.

2.3 Mesh Size Specification

Another important aspect of mesh generation, besides
the handling of geometrical CAD data, is the control
over the spatial distribution of size and shape of the
elements to be generated. Inside the ST+-+-system,
this is the task of the mesh size specification object
shown in Figure 3. The local element size at a cer-

Mesh Size Specification

« local mesh size
« stretching directions

Sources

« point

«line

« triangle

« quadrilateral
* prism

« hexahedron
« sphere

« cylinder

« cone

« frustrum

Default

« constant
Background Grid
« tetrahedra

Cartesian Mesh
« octree-cells
« local lengths

Operations
* GetSpacing()
« InsertSource()
« DeleteSource()
« RasterGeometry()
* ScaleSpacings()
« Transform()

Import Filter
sFUTE

+ CENTAUR

* native —

5
Surface Mesher

Figure 3: Mesh size specification component.

tain point in 3-D space is determined by the minimum
size defined by all active objects. For that purpose, a
Cartesian background grid, a tetrahedral background
grid and sources are available, which can be used inde-
pendently from each other depending on the require-
ments of the user. Additional types of application spe-
cific sources can easily be added, because all sources
are derived from a generic source object defining the
following common lean interface for all sources:

e GetMinSpacing(doubleT &outMinSpacing)

e GetSpacing(const doubleT #*xyz, doubleT
&outSpacing)

These methods only have to be specialised and im-
plemented to add a new source type transparently to
the objects working with the mesh size specification
object.

Several methods are offered to achieve dynamic mod-
ifications of the local edge lengths. Sources can be
added, deleted or modified dynamically, all spacings
can be scaled in common and spatial transformations
can be applied to all entities. These operations are
intended to be used during dynamic mesh modifica-
tion processes originating from transient simulations,
design optimisations, etc.

The automatic determination of a well suited Carte-
sian background mesh based on a rasterisation of the
CAD geometry is presented in section 3. This ap-
proach differs from the octree based approaches pre-
sented in [3, 4], because the sizes of the Cartesian cells
are largely independent from the local element sizes
calculated. Only the scalar quantities defined in each
Cartesian cell are used to derive the mesh size at a
certain point in space. Experience has shown that
the Cartesian cell size is generally two to eight times
larger than the calculated lengths, hence, the Carte-
sian meshes created are much smaller than those grids
generated in [3, 4].

2.4 Surface Mesher

The kernel of the ST++-system is the surface mesher
component illustrated in Figure 4. Its task is the

Geometry Def. Mesh Size Spec

'.‘ ’..

Surface Mesher
Set of

Discretised) ~—~——,
/ Curves

Advancing Front
« Ordered set of sides
« InsertSide()
2 DeleteSide()

Initial Front

Generator
*SetTolerance()
«CreatelnitialFront()

Curve
Discretiser
SetTolerance()
<DiscretiseCurves()

Advancing Front
Triangulator
*SetTolerance()
*Triangulate()

Surface Mesh
» Nodes, Edges, Triangles
« Connectivities on demand
= Append()
2+ Extract()

Volume Mesher

Figure 4: Surface mesher component.

Surface Mesh
Enhancer
*SetTolerance()
*SwapDiagonals()
*Smooth()

control and the exchange of data between the differ-
ent objects responsible for the different steps of the

meshing procedure. Based on the advancing front
algorithm[15] [16] the different steps are spread across
the curve discretiser, the initial front generator and the
advancing front triangulator object. For each topolog-
ical face to be meshed, the curve discretiser discretises
all the topological edges connected to the face if not
already done. This set of straight sides is given to
the initial front generator which builds up the initial
advancing front. The triangulator uses this starting
front to generate the triangles added to the surface
mesh. When no sides are left in the front, the tri-
angulation is finished and the surface mesh is trans-
ferred to the mesh enhancer for optimisation. After
optional postprocessing steps, such as removal of du-
plicate nodes and edges, correcting the orientation of
the facets, checks, etc., the merged surface meshes can
act as the starting point for a volume triangulation.

3. GEOMETRY RASTERISATION

A fully automatic and parallel feature-based rasteri-
sation of native CAD data has been developed. The
local curvature and characteristic length are investi-
gated along CAD curves and inside trimmed CAD
surfaces in order to define local sample lengths. A lo-
cally refined Cartesian background mesh (octree data-
structure) is constructed to prolongate and therewith
smooth the sample lengths. Additionally, Cartesian
cells inside the geometry may be blanked out in or-
der to avoid length prolongation through solid bod-
ies. During the surface mesh generation, the Cartesian
background mesh serves as the mesh size specification.
Details are provided in [17].

3.1 Rasterisation of Native CAD Curves

The rasterisation of CAD curves are controlled mainly
by three sampling parameters specified by the user:
minimal arc length L,;,, maximal arc length Lnaq
and maximal curvature angle @mqaz. Now a CAD curve
is subdivided into consecutive curve segments applying
the following three sampling criteria: the arc length of
a curve segment must not be smaller than the speci-
fied minimal arc length L,,;,. Conversely, the curve
segment length must be smaller than the maximal arc
length L;,q.. Finally, the curvature angle must be
smaller than the maximal curvature angle &pmq-. This
last sampling criterion is only applied, if the arc length
is larger than the minimal arc length L,,i,. The curva-
ture angle is taken as the angle between the tangential
vectors at the two end points of a curve segment. The
sample length cannot be larger than the length of the
corresponding CAD curve. Finally, all curve segments
are approximated by straight lines. For each straight
line a bounding box is determined, termed raster box,
which controls the local resolution of the later to be
generated Cartesian mesh.

3.2 Rasterisation of Native CAD Surfaces

The rasterisation of CAD surfaces requires the same
three user specified sampling parameters Lmin, Lmaz
and maqz, which are used also for curve rasterisation.
Because only the part inside a trimmed CAD surface
is considered, a scan-line algorithm[18] [19] from com-
puter graphics is applied. As a first step, the trimming
CAD curves are approximated by sequences of straight
lines. For this, they are rasterised as described ear-
lier. The resulting straight lines in physical (Carte-
sian) space are transformed to the (u-v)-parameter
space of the CAD surface, in which the remaining com-
putation takes place. This discrete representation of
corresponding trimming curves must not intersect each
other because of the scan-line algorithm.

The second step consists of computing the stencil point
distribution, where the local surface curvature will be
investigated later. For both u- and v-direction equally
distributed iso-curves (probes) of the CAD surface are
rasterised applying again the previous curve rasteri-
sation algorithm. However, this time the curvature
angle is defined as the angle between the surface nor-
mal vectors at the end points of a curve segment. The
end points of the evaluated curve segments are taken
as the desired stencil points. For each direction, the
final stencil point distribution is extracted from these
probes. In Figure 5 the final stencil point distribution
in u- and v-direction are represented by the circles.

Now the scan-line algorithm is applied separately for
the u- and v-iso-curves, which are defined by the sten-
cil points (third step). It identifies the parts of the iso-
curves which are inside the polygon constituted by the
sequences of straight lines and thus inside the trimmed
surface. The demarcations are drawn as squares in
Figure 5. However, these inner curve parts are ras-
terised again with the presented approach. After-
wards, the computed sample lengths are related to the
stencil points located inside the trimmed surface (cir-
cles drawn with thick lines in Figure 5). Every stencil

| | |
inner part of scan line

trimming curves
\ \ u-v parameter space for CAD surface

Figure 5: Rasterisation of trimmed surface.

point inside the trimmed surface gets a raster box ac-
cording to the stored sample length. Additional raster
boxes are created if the distance between two stencil
points is larger than their sample lengths. In this way,
the trimmed surface is completely enclosed by raster
boxes, which are used for the generation of the Carte-
sian background mesh.

3.3 Cartesian Background Mesh

The locally refined Cartesian background mesh speci-
fies the mesh size required by the surface mesh gener-
ator. It is based on the hierarchical octree-data struc-
ture describing the connectivity between the Cartesian
cells[20] [21] [22]. The raster boxes along the CAD
curves and CAD surfaces determine the local resolu-
tion of the Cartesian background mesh: all Cartesian
cells which intersect a raster box are identified. These
Cartesian cells must not be larger than the current
raster box. Besides, the sample length of the corre-
sponding curve segment, or rather, the surface stencil
point is stored in every intersected Cartesian cell. At
the end, the Cartesian background mesh is smoothed
accordingly to a one-level difference rule: it is not al-
lowed that two neighbouring Cartesian cells differ by
more than one refinement level.

The stored sample lengths are prolongated through
the Cartesian mesh. The rate of change between adja-
cent Cartesian cells is limited by an user-defined slope.
In this way, a smoothed sample length distribution is
achieved in the complete flow domain. Moreover, the
user is able to control the rate of coarsening of the
triangulation by modifying this slope parameter. Fi-
nally, the gradient of the sample length is calculated
using a least square method.

During generation of the surface triangle mesh, the
Cartesian background mesh specifies the local mesh
size. For each point, the local mesh size is required.
First, the Cartesian cell is identified applying the hi-
erarchical octree data-structure enclosing this point.
Then the sought mesh size is interpolated linearly us-
ing the sample length and its gradient, which is stored
in the Cartesian cell. The smoothed mesh size speci-
fication is also available in space and therefore usable
by a volume mesh generator.

3.4 Blanking out of Solids

The penetration of the sample length through solids
is avoided. This means, that the local mesh size of
the lower side of a thin geometry does not influence
the mesh size on the upper side. Therewith, unneeded
refinement is avoided and the resulting surface mesh is
locally more homogenious. Especially this affects the
quality of a possible quasi-prismatic mesh, because the
local prismatic mesh height strongly depends on the

corresponding (underlying) surface triangle. Figures 6
and 7 show the impact of blanking out solids for the
nacelle of a generic transport aircraft: the smaller sam-
ple lengths of the engine (Figures 15 and 16) penetrate
through the solid nacelle coating and reduce the sam-
ple lengths there, Figure 7. In contrast, Figure 6 il-
lustrates that this does not occur, if the prolongation
through solids is avoided. For thick geometries, blank-
ing out of solids is not necessary.

Figure 6: Without blanking out solids for nacelle (generic
transport aircraft).

Figure 7: With blanking out solids for nacelle (generic
transport aircraft).

In order to prevent sample length prolongation
through solids, all Cartesian cells inside solids are
blanked out: these cells simply are not considered for
the length prolongation procedure. As pre-requisite, a

closed initial surface mesh of the geometry is required.
If an initial surface mesh is not available (for example
STL output format of the CAD system), the initial
surface mesh is generated without blanking out solids.
Here - after rasterisation of the geometry and before
length prolongation - the smoothed Cartesian mesh
together with the initially stored sample lengths are
stored. Therewith, it is avoided to raster the geome-
try again for generating the final surface mesh.

After finishing the initial surface mesh, the sample
length is prolongated again using the Cartesian mesh
previously stored. But this time, all Cartesian cells in-
side the body are not considered for the length prolon-
gation. In order to blank out inner cells, all Cartesian
cells are identified, which are intersected by the ini-
tial surface mesh. The locations (inside / outside) of
the remaining cells are found using a ray-tracing and a
coloring algorithm[19] [22]: first the location of a cell
(with undefined location) is determined by ray tracing.
Afterwards, all neighbor cells obtain the same location
recursively, which are not marked to be intersected
by the geometry. Figure 8 presents all Cartesian cells
which are inside the generic transport aircraft, whereas
the intersected cells are drawn in Figure 9. Here, the
small pictures show the regions marked by the black
circles.

Figure 8: Cartesian cells inside the geometry (generic
transport aircraft).

4. PARALLELISATION

To reduce the response time of the ST++ surface grid
generator, the most time-consuming tasks are par-
allelised based on the message passing programming
model by the use of the MPI-standard[23] [24]. This
enables the efficient utilisation of both shared and dis-
tributed memory systems, which would not be the case
for a shared memory parallelisation based on multi-
threading. Due to this distributed memory approach
also cost-effective PC-cluster type hardware can be

Figure 9: Cartesian cells intersected by the geometry
(generic transport aircraft).

used successfully for parallel surface meshing as will
be shown in section 5.

4.1 Parallel Geometry Rasterisation

The first computational intensive part is the rasterisa-
tion of the geometry. Here the main loop over all edges
and faces is parallelised in a pipeline approach, which
is illustrated in Figure 10. At the beginning the n par-

Geometry Def.

Process 0
DISTRIBUTOR Rasteriser

Subgeometry Subgeometry
Subgeometry
Raster Boxes @ ﬁ

Process n-1
COLLECTOR

Rastenser

Cartesian Mesh

Mesh Size Specification

Figure 10: Parallel rasterisation of the geometry.

ticipating processes are subdivied into one distributor,
one collector and n — 2 workers performing the analy-
sis. To achieve an automatic load balancing the work-
ers first have to ask for a new set of edges and/or faces
to be rastered. By this 'work on demand’-strategy the
load imbalance caused by different geometric entities,
parameters, etc., is minimised. When a worker process
finished the rasterisation of its current subgeometry as
described in section 3, the computed raster boxes are

sent to the collector process for an adaptation of the
Cartesian mesh. At the end the collector process per-
formes all further postprocessing operations (smooth-
ing, length prolongation, I/O, etc.) on the Cartesian
mesh in sequential mode. Hence, the scalability of the
parallelisation is limited, but up to a modest number of
processes a sufficient speedup of more than one order
of magnitude is obtained as demonstrated in section 5.

4.2 Parallel Surface Meshing

For the parallel surface meshing the loop over the faces
to be meshed is parallelised similiar to the parallel
rasterisation. This is shown in Figure 11. After each

Process n-1 ‘:
Surface Mesher) [NERSER

Volume Mesher

Figure 11: Parallel surface meshing.

process has determined its role (distributor, merger
or worker), the necessary initialisation steps are exe-
cuted. The distributor reads in the complete geometry
and all workers are initialising the mesh size specifica-
tion. Then the parallel meshing starts. Each worker
queries for the next set of faces to be meshed to en-
able an automatic load balancing. Depending wether
or not the distributor pre-discretises the face bound-
ary edges, the next set of geometric entities is sent
to the corresponding worker with or without the (al-
ready) pre-discretised edges. This pre-discretisation is
mandatory due to floating point roundoff errors, which
my cause an edge to be discretised with one side more
or less, which prevents the recombination of the sub-
meshes into one consistent mesh due to non-matching
boundaries. Heterogeneous clusters running different
types of processors are candidates for this parallel pit-
fall. When the worker has finished the advancing front
triangulation and the mesh enhancements, the sur-
face mesh is transmitted to the merger process. Af-
ter all faces have been meshed, the merger assembles
the complete mesh by combining all the received sub-
meshes. On the final grid further postprocessing op-

erations (unifying the orientation, etc.) are performed
in sequential mode.

As with any pipelining strategy, it is important to:

e keep the pipeline filled,
e select the optimal length of the pipeline,

e optimise the chunks of data to be processed be-
tween different stages.

Hence, a CAD model of reasonable size should be
used if also many processors are involved, otherwise
a resonable scalability will not be obtained. Addition-
ally, faces requiring more computational effort should
be processed first during the parallel meshing to bal-
ance the throughput. Especially at the end, such faces
should not occur, otherwise some processors continue
working while most of the others have already finished
their work, which can heavily limiting the scalability of
the approach. Therefore a heuristic meshing weight is
calculated for each face during the rasterisation. This
weight is estimated by the sum over all inverse edge
lengths times the surface areas of the corresponding
raster boxes. Such a weight is approximately pro-
portional to the number of triangles to be generated
for the face and enables the above mentioned opti-
misations concerning the order in which the faces are
meshed.

The size of the subgeometries can be adapted accord-
ingly to the capabilities of the underlying communi-
cation network. Smaller subsets can be used for low-
latency /high-bandwidth networks, whereas larger sub-
geometries might be more favourable for less perfor-
mant interconnects reducing the number of messages
to be exchanged. However, this also depends to a large
extent on other factors such as the size of the geome-
try, the processors, etc.

It is clear that the maximum speedup achievable is
inverse proportional to the maximum time needed to
raster/mesh a single face. If some faces consume a
large amount of computational time, the parallel exe-
cution will not perform as expected. In such cases a
fine-grain parallelisation of the underlying algorithms
will have to be used to further speed up the pro-
cess. Nevertheless, if the meshing time can reduced
more than an order of magnitude as will be shown in
section 5, the result is worth the effort inherent with
the presented approach.

4.3 Parallel Surface Remeshing

The parallel surface remeshing presented in Figure 12
is characterised by a three stage approach:

1. Parallel surface mesh analysis

2. Parallel curve rediscretisation

3. Parallel surface remeshing

Mesh Size Spec
' S . '

H K) H
parallel mesh initialisation parallel mesh initialisation
' . e '

[N [

» Al
Process 0 M\ parallel mesh analysis Process n-1
Mesh Analyser /) “"i5’each partition . \Mesh Analyser
-
Surface Mesh Surface Mesh

;foceshs 0 DISTRIBUTOR

emesher
N unmodified MERGER
H Surface Mesh

preparation of parallel Remesher
curve re-discretisation

H
H Geometry Def.
Process 0

Curve Discretiser

Edges and Curves only!

Subgeometry " ~.‘
Suhgeometry
Process l Process 2 Process n- -2
Process n-1
MERGER
Process 0
Romesher, DISTRIBUTOR
Subgeometry
Subgeomelw Subgeometry
Process 1 Process 2 Process n-2
" Process n-1

Remesher MERGER

Volume Mesher

Figure 12: Parallel surface remeshing.

It starts with the initialisation of the modified mesh
size specification in every process. Modifications can
be caused by the addition/removal of sources, by a
modified raster length prolongation, etc. For a par-
allel analysis the existent surface mesh is partitioned
across the available processes with one element overlap
across the domains by means of the MeshLib-library®.
In the first stage all elements (triangles) containing
edges not respecting the mesh size are marked within

3An OO library developed by the first author for the
MPI-parallel handling of hybrid unstructured meshes in-
cluding partitioning, decomposition, communication, etc.

each partition. To ensure that both the sequential and
the parallel marking algorithms result in the same set
of markers, the states of the external elements” have to
be exchanged after each marking loop in the parallel
version. After this parallel analysis step, the partitions
including the markers are collected again on the sin-
gle distributor process, which extracts the parts to be
remeshed and forwards the unselected parts directly
to the merger process. In the second stage, the paral-
lel rediscretisation of all internal edges lying on curves
of the geometry is performed. Start- and endpoints of
such segments are determined by the distributor and
sent, together with the underlying geometric entity,
to the next worker waiting for data. The rediscre-
tised segments are collected and recombined by the
merger and returned back to the distributor when all
rediscretisations have been performed. In the third
stage the distributor extracts the outer boundary of
each hole and sends away these edges, together with
the underlying surface definitions, to the next worker
querying for data. The remeshed holes are collected at
the merger and inserted again into the existent mesh.

It depends on the application area whether a com-
plete regeneration from scratch or a local remeshing
based on the already existent surface mesh is the bet-
ter approach. Concerning dynamic CFD simulations
the remeshing will be the alternative of choice because
most of the volume mesh is normally kept fixed and
only a small subset of the mesh has to be modified.
With a complete new surface mesh also the entire vol-
ume mesh would have to be regenerated causing much
more overhead compared to the local remeshing. Dur-
ing the generation of the initial surface mesh a com-
plete regeneration might be the best option due to the
normally similar time required and the slightly better
quality.

5. EXAMPLES

5.1 Generic Transport Aircraft

The presented concept of fully automatic surface mesh
generation is demonstrated with a generic transport
aircraft. The CAD description is imported via the
STEP format and consists of 864 NURBS curves and
346 NURBS surfaces. The only input parameters (for
CAD surfaces) specified by the user are the minimal
arc length L., (default value 0.25 [mm], for wing 0.1
[mm], for nacelle 0.3 [mm]), the maximal arc length
Laz (default value 50 [mm], for nacelle 20 [mm], for
farfield/symmetry plane 1 [m]) and the maximal cur-
vature angle maq. (default 10 [°]). Additionally, the
following CAD curves are rastered:

4Duplicated elements in the overlap area of a partition
owned from another process

e wing trailing edge (Lmin = 0.75 [mm], Loz =
1.5 [mm]),

e wing root edge (Lmin = 2.5 [mm], Limaz = 5.0
[mm]),

e and wing tip edge (Lmin = 0.5 [mm], Lz = 1.0
frum)).

We emphasize that not a single source is specified for
this case. Figure 13 presents the surface mesh of the
generic transport aircraft: the half configuration con-
sists of 322204 triangles (final surface mesh). The
initial surface mesh without blanking out solids con-
tained 330320 triangles. Details of the wing tip region
are shown in Figure 14. Furthermore, in Figures 15
and 16 the nacelle coating is opened, thus the inner
part of the engine is revealed. Here, Figure 16 shows
the detail of Figure 15, which is marked by the black
circle. In Figure 17 timing measurements are given

Figure 13: Surface triangulation for generic transport
aircraft.

Figure 14: Wing tip of generic transport aircraft.

for parallel rasterisation and surface meshing. All runs
had been performed on a PC cluster system running
with XEON 2.67 GHz processors connected via gigabit
ethernet. Although only a parallel meshing speed-up
of about four can be obtained for 16 processors, the

b,

A

V\/\
"
4
7o

T
N
NNAYAYATAR
PRNSSSNN
VRSN
RISRERCRAS
(N NYAVAY
AVVS

X
VAV
A7
)\

>~
\VAvs XY
O

‘ﬁv AV “ﬁ

W AVay,
KRN

N

20A

>
/|
\WAVAYY
YAV
¥
N

N/
I
VvV

K

V%
%

g

2
K

AN
S

Figure 15: Inside view of nacelle for generic transport
aircraft.

v
Y/
o>
3

W
KKl

KNP
SRR
AREREY

Figure 16: Detail of inside view of nacelle for generic
transport aircraft.

700 | imels e

- ime [s]

Rasterisation """ gooip EB

time [s] <4

— — — - speed-up ’ B
-

Meshing

speed-up

10
#processes

Figure 17: Performance figures for generic transport air-
craft.

important total time (also including I/O operations,
...) to get a surface mesh for the complete configura-
tion starting from a geometry without any sources is
reduced down to less than five minutes.

5.2 Advanced Fighter-Type Aircraft

The geometry definition of this example consists of
6788 NURBS curves and 2749 NURBS surfaces and
is imported via the STEP-format. Input parameters
(for CAD surfaces) specified by the user were the min-
imal arc length Ly,in (default value 4 [mm], for air
data sensors 0.5 [mm)], for nearfield 0.5 [m]), the max-
imal arc length Lyq. (default value 100 [mm)], for air
data sensors 5 [mm)], for nearfield 5 [m]) and the max-
imal curvature angle ma. (default 15 [°]). Again, no
sources were used. The surface grid (containing 1.6
million triangles) shown in shaded mode in Figure 18
is thus solely based on the edge lengths calculated by
the rasterisation process. In Figure 19 timing mea-

Figure 18: Front view of advanced fighter-type aircraft.

surements are given for parallel rasterisation and sur-
face meshing. All runs had been performed on a PC
cluster system running with XEON 2.67 GHz proces-
sors connected with a QUADRICS network. Speed-
ups of more than one order of magnitude are obtained
for both the rasterisation and the surface meshing.
The most important result is the reduction of the total
time needed to get a surface grid starting from the wa-
tertight geometry. For 32 processors, the turnaround
time can be reduced from about 1:10 hours down to
10 minutes.

6. CONCLUSIONS

The recently developed ST++-system has been pre-
sented. The OO design and implementation of the

3000 ~

time [s] —30
— — — - speed-up]
time [s]

— — — - speed-up d25

Rasterisation

2500 | Meshing

2000

1500 |

time [s]
&
speed-up

1000

20
#processes

Figure 19: Performance figures for an advanced fighter-
type aircraft.

system was described together with the three major
components, the geometry definition, the mesh size
specification and the surface mesher itself. Based on a
rasterisation of the geometry an automatic way of de-
termining a smooth distribution of the element sizes in
3-D space was highlighted. To achieve fast turnaround
times, the computationally intensive parts can be ex-
ecuted in parallel. Especially for large complex con-
figurations containing thousands of geometric entities
the turnaround time can be reduced greatly by the
presented approach as shown in the examples.

ACKNOWLEDGEMENTS

We would like to thank EADS Military Aircraft, Otto-
brunn, and all colleagues in the numerical simulation
department for the support.

Special acknowledgements have to be given to Luciano
Fornasier, Stephan M. Hitzel, Kaare A. Sgrensen and
Herbert Rieger for the great support concerning dif-
ferent topics of this work.

References

[1] Fornasier L., Deister F., Tremel U., Hassan O.,
Weatherill N.P. “Robust and Efficient Genera-
tion of Unstructured Surface Grids about Geo-
metrically Complex Configurations Using Real-
Design CAD Data.” 41th AIAA Aerospace Sci-
ences Meeting and Exhibit. ATAA, Jan. 2003

[2] Thompson J.F., Soni B.K., Weatherill N.P., edi-
tors. Handbook of Grid Generation. CRC Press
LLC, 1999. Chapter 26

[3] McMorris H., Kallinderis Y. “Octree-Advancing
Front Method for Generation of Unstructured
Surface and Volume Meshes.” AIAA Journal, vol.
Vol. 35, no. No. 6, Jun. 1997

[4]

[12]

[13]

[16]

[17]

[18]

Aftosmis M.J., Delanaye M., Haimes R. “Au-
tomatic Generation of CFD-Ready Surface Tri-
angulations from CAD Geometry.” AIAA Paper
99-0776, 1999

Computational Dynamics Research (CDR), In-
novation Centre, University College, Singleton
Park, Swansea SA2 8PP, UK. FLITE-3D User
Manual

Gamma E., Helm R., Johnson R., Vlissides J.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995

Stroustrup B. The C++ Programming Language.
Addison-Wesley, 3rd edn., 1997

Balzert H. Lehrbuch der Software-Technik. Spek-
trum Akademischer Verlag, 1998. Software-
Management, Software-Qualititssicherung, Un-
ternehmensmodellierung

Balzert H. Lehrbuch der Software-Technik. Spek-
trum Akademischer Verlag, 1998. Software-
Entwicklung

ISO (International Organisation for Standardiza-
tion), Geneva. STandard for the Ezchange of
Product model data (STEP), ISO 10303

NIST (National Institute of Standards and Tech-
nology). Initial Graphics Ezchange Specification
(IGES), Version 5.8, 1990

Thompson J.F., Soni B.K., Weatherill N.P., edi-
tors. Handbook of Grid Generation. CRC Press
LLC, 1999. Chapter 27

Farin G.E. Curves and Surfaces in Computer
Aided Geometric Design. Academic Press, Inc.,
4th edn., 1997

Piegl L., Tiller W. The NURBS Book. Springer,
2nd edn., 1997

Thompson J.F., Soni B.K., Weatherill N.P., edi-
tors. Handbook of Grid Generation. CRC Press
LLC, 1999. Chapters 17, 19

Lohner R. Applied CFD Techniques. John Wiley
& Sons Ltd, 2001

Deister F., Tremel U., Hirschel E.H., Rieger H.
“Automatic Feature-Based Sampling of Native
CAD Data for Surface Grid Generation.” Numer-
ical Notes on Fluid Mechanics, 2003. To appear

Piegl L., Richard A. “Tessellating trimmed
NURBS surfaces.” Computer Aided Design,
vol. 27, no. No. 1, 16-26, 1995

[19]

[20]

[21]

[22]

Foley J.D., van Dam A., Feiner S.K., Hughes
J.F. Computer Graphics: Principles and Prac-
tice. Addison-Wesley, 2nd edn., 1990

Deister F. Selbstorganisierendes hybrid-
kartesisches Netzverfahren zur Berechnung
von Stromungen um komplere Konfigurationen.
Ph.D. thesis, Universitit Stuttgart, 2002

Deister F., Hirschel E. “Self-Organizing Hybrid
Cartesian Grid/Solution System with Multigrid.”
ATAA-2002-0112. 2002

Aftosmis M.J. “Solution Adaptive Cartesian Grid
Methods for Aerodynamic Flows with Complex
Geometries.” Lecture Series CFD, vol. 2. VKI,
Mar. 1997

Snir M., et al. MPI — The Complete Reference.
The MIT Press, 2nd edn., 1998. Vol. 1, The MPI
Core

Gropp W., et al. MPI — The Complete Refer-
ence. The MIT Press, 1998. Vol. 2, The MPI
Extensions

