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ABSTRACT

 Boundary value problems posed over thin solids are often amenable to a dimensional reduction in that one or more spatial 
dimensions may be eliminated from the governing equation. One of the popular methods of achieving dimensional reduction is 
the Kantorovich method, where based on certain a priori assumptions, a lower-dimensional problem over a ‘mid-element’ is 
obtained. Unfortunately, the mid-element geometry is often disjoint, and sometimes ill defined, resulting in both numerical and 
automation problems. 
 A natural generalization of the mid-element representation is a skeletal representation. We propose here a generalization of 
the Kantorovich method that exploits the unique topologic and geometric properties of the skeletal representation. The proposed 
method rests on a quasi-disjoint Voronoi decomposition of a domain induced by its skeletal representation. The generality and 
limitations of the proposed method are discussed using the Poisson’s equation as a vehicle. 
Keywords: Geometric simplification, medial axis transforms, dimensional reduction, plate theory, CAD/ CAE. 

1. INTRODUCTION 

 Engineering analysis typically entails solving 
boundary value problems via computational procedures 
such as the finite element method. When the underlying 
geometry is relatively thin, boundary value problems are 
amenable to a dimensional reduction in that one or more 
spatial variables may be eliminated from the governing 
equation, prior to a finite element discretization. This 
results in significant computational gains with minimal loss 
in accuracy [Donaghy 96]. A popular means of achieving 
dimensional reduction is the Kantorovich method 
[Kantorovich 64], [Pilkey 94], [Shames 85]. The essential 
aspects of the method are summarized below for the 
Poisson’s equation. This summary will also help identify an 
important limitation of the method that we address here. 

1.1 The Kantorovich Method 

Consider a thin rectangular domain illustrated in 
Figure 1-1, where lh << . Let ),( yxU  be a field that 
satisfies the Poisson’s equation: 

            interiorfor   02 ∈+∇ (x,y)k =U  
 Subject to: boundaryfor             0 ∈= (x,y)U  
The problem of determining ),( yxU  is two-dimensional, 
but since lh <<  it may be reduced to an approximate one-
dimensional problem via the Kantorovich method. 
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Figure 1-1: Mid-element of a rectangle. 

 The first step in the Kantorovich method is to exp ress 
the Poisson’s equation as an equivalent variational 
statement [Reddy 84], [Shames 85]:  
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 Subject to: boundaryfor             0 ∈= (x,y)U  

The next step is to seek an approximate solution ),( yxU
)

 
that satisfies the boundary conditions on the ‘dominant 
parallel edges’, i.e., on hy ±= . A non-trivial function 
satisfying this requirement is: 
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Higher-order polynomials in y or even trigonometric 

functions may be used, provided 0),(ˆ =±hxU . ),( yxU
)

 is 
referred to here as a Kantorovich trial function; it defines 
the ‘function space’ in which a solution is being sought. 

Note that )()0,(ˆ xuxU =  where )(xu  is an unknown 
function over the line-segment 0=y . This line-segment is 
incidentally called a mid-element of the rectangle.  



 In the assumed function space, one can find )(xu  by 
substituting the trial function in the variational statement 
and integrating over y , i.e., eliminating y . This results in: 
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 Subject to: lxu ,0for   0 ==  
Thus a 2-D variational problem has been reduced to a 1-D 
variational problem over the mid-element involving )(xu . 
One can now proceed to minimize the 1-D problem using 
standard 1-D finite element techniques [Reddy 84], 
[Shames 85].  
 Thus the above Kantorovich method may be viewed as 
a two-stage approximation process as opposed to a single 
stage finite-element method, as illustrated in Figure 1-2 
[Babuska 94].  
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Figure 1-2: Mid-element dimensional reduction. 

 By considering Kantorovich trial functions that 
completely span the solution space, a hierarchical system of 
solutions ),( yxU n

)
 that converge to the exact solution may 

be obtained; see hierarchical methods proposed by Babuska 
and others [Vogelius 81], [Babuska 94]. The two-stage 
approximation results in considerable computational gains 
since the first stage is executed once in a symbolic sense. 
 Various lower-dimensional theories of beams and 
plates are derived along similar lines. The starting point for 
such theories is the principle of virtual displacement, a 
generalization of the above variational statement, which 
states that for a system in static equilibrium, the work done 
by a virtual displacement must be zero [Shames 85]: 
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If the solid is sufficiently thin, one may assume certain trial 
functions for the displacements iu , and a spatial variable 
may be eliminated resulting in a lower dimensional 
problem over the mid-element [Shames 85], [Wang 00]. 

2. LIMITATIONS OF THE MID-ELEMENT 
BASED KANTOROVICH METHOD 

 We now identify a serious drawback of the mid-
element based Kantorovich method. Consider the notched 
rectangle illustrated in Figure 2-1. For simplicity, we shall 

assume that a field defined over the solid satisfies, as 
before, the Poisson equation and zero Dirichlet conditions.  

 
Figure 2-1: A notched rectangle. 

 Recall that, in the Kantorovich method, one must seek 
a trial function that satisfies the boundary conditions along 
the ‘dominant parallel edges’. Due to the irregularity of the 
solid, it is not possible to define a single analytic function 
over the entire domain that meets this requirement. The 
domain is therefore divided into 3 quasi-disjoint regions 

1Ω , 2Ω  and 3Ω  as illustrated in Figure 2-2.  Further one 
can define a mid-element iM  and a thickness ih2  with 
each region. The pairs ( )ii hM ,  constitute the mid-element 
representation of the solid that unambiguously captures the 
geometry of the notched rectangle. 
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Figure 2-2: Mid-element based decomposition. 

 Observe that, due to the decomposition, the variational 
statement of Equation (1-1) can now be expressed as: 
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where the x-axis conveniently coincides with the mid-
element iM . We now define three trial functions 1U

)
, 2U
)

 
and 3U

)
, one in each of the three domains per: 
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Observe that 0),(ˆ =± iii hxU , and )()0,(ˆ
iiii xuxU =  where 

)( ii xu  are unknown functions. 
 With these definitions in place, one can eliminate iy  
as before by substituting the assumed trial functions in the 
above variational formulation. This results in a variational 
statement governing three unknown functions iu  over the 
3 independent mid-elements iM . 
 At first glance, it appears that the above formulation is 
no different from that associated with a rectangle. 
However, this is not true … we have now violated the 
admissibility criterion of a variational formulation! It is a 
well-established fact that in a variational formulation, 
whenever a domain is sub-divided, and different trial 
functions are defined over each sub-domain, the trial 
functions must satisfy an admissibility criterion [Strang 73]. 
The admissibility criterion states that if the variational 
statement involves derivatives up to order m, then the trial 

functions must be at least 1−mC  continuous across the 
boundaries of adjacent sub-domains.  
 In our case the variational statement involves only the 
first derivative of ),( yxU . However, one can easily verify 



that the assumed trial functions ),( yxU i
)

 are not 
0C continuous across the common boundaries, violating 

the admissibility criterion. This fact is often ignored, 
leading to both automation and numerical problems.  
 Since the assumed trial functions are not admissible  
from a variational standpoint, any attempt to couple the 
three functions 1u , 2u  and 3u , and their derivatives is 
necessarily ad hoc and approximate … it does not follow 
from the mid-element based geometric decomposition. 
More importantly, since the admissibility criterion is 
violated, no formal claims can be made about the 
convergence or accuracy of the mid-element based 
Kantorovich method, as it applies to such solids. 
 Further, a mid-element based decomposition does not 
always exist since the mid-element representation is 
incomplete for a large class of solids. For example, 
consider a dovetail section illustrated in Figure 2-3. Since 
there exists no mathematical definition of a mid-element, 
we rely on the dimensional reduction process to yield 
appropriate mid-elements. This would yield the mid-
elements illustrated in Figure 2-3. However, it is now 
impossible to assign a thickness – even a varying one – to 
each of the mid-elements such that the solid may be 
recovered, i.e., the mid-element representation is 
incomplete. The two problems identified above are much 
more pronounced and difficult to resolve in 3-D.   

 
Figure 2-3: Disjoint mid-elements for a dovetail 

2.1 Prior Work 

 The Kantorovich method (and its variations) has been 
extensively investigated, as it applied to uniform-thickness 
plates and shells. The works of Reissner, Hencky, Mindlin, 
Lo, Reddy and others (see references in [Reissner 85]) fall 
into this category, so does the modern work on hierarchical 
modeling [Vogelius 81], [Babuska 91], [Madureira 99]. 
 However, focusing our attention on geometrically 
more complex but thin solids, Armstrong and colleagues 
[Armstrong 94], [Donaghy 96] were the first to propose the 
use of medial axis transform (defined below) to resolve 
some of the geometric issues associated with the mid-
element representation. The medial axis transform, or 
skeletal representation as it is referred to in this paper, is a 
natural generalization of the mid-element representation, 
and it consists of a skeleton and a radius function, where 
the skeleton ‘follows’ the shape of the solid, while the 
radius function captures the local thickness. The skeleton of 
the dovetail is illustrated in Figure 2-4. Observe the 
similarities and differences between Figure 2-3 and Figure 
2-4. The most important difference is that the skeletal 
representation is an unambiguous and complete geometric 
representation, whose mathematical properties are now 
well understood [Choi 97], [Sherbrooke 96], and its role in 
engineering analysis is well documented [Tam 91], 
[Armstrong 95], [Price 95], [Armstrong 98], [Monaghan 
98], [Sheffer 98], [Armstrong 99], [Shim 01].  

 
Figure 2-4: The skeleton of the dovetail. 

Since the skeletal representation of a solid is well 
defined, numerous authors [Donaghy 96], [Onodera 01] 
have proposed computing an approximate mid-element 
from the skeleton. However, the approximation involves 
heuristics since the mid-element is not mathematically well 
defined. Moreover, the resulting mid-element is not 
necessarily continuous, leading to a violation of the 
aforementioned admissibility criterion. Finally, there is an 
inherent loss in geometric information during the 
approximation. This loss can never be recovered in that the 
computed field solution will never converge to the exact 
solution in the sense of [Babuska 94]. 

In this paper, we propose a direct skeletal 
representation based Kantorovich method that does not rely 
on heuristics, and can therefore be fully automated. Further, 
the proposed method will not only satisfy the admissibility 
criterion, but also the conformance criterion  [Strang 73], 
and is therefore expected to converge to the exact solution.  

2.2 Skeletal Representation Based 
Generalization of the Kantorovich Method 

The method proposed here combines the Kantorovich 
principle of two-stage reduction with the unique topologic 
and geometric properties of the skeletal representation, and 
has three essential features.  
• First is the decomposition of a solid into its S-Voronoi 

decomposition (see Section 3). 
• Second is the definition of generalized Kantorovich 

trial functions defined over the decomposition. By 
construction, the trial functions will not only satisfy 
the admissibility criterion, but will also be complete  
and satisfy essential boundary conditions.  

• Third is the elimination of one of the space variables 
(essentially, the thickness parameter), by appropriate 
mathematical transformations.  
In Section 3, we review the properties of skeletal 

representations. In Section 4, we describe the proposed 
method in detail using the Poisson’s equation as a vehicle. 
In Section 5, numerical experiments involving Poisson 
problems over 2-D polygonal solids are presented. In 
Section 6, we propose a strategy for inclusion of 
singularities, and Section 7 summarizes the main 
contributions of the paper. 

3. SKELETAL REPRESENTATIONS 

 Skeletal representations (s-reps) are characterized by 
two entities, namely a skeleton (or medial axis) and a 
radius function. The two entities are defined through the 
concept of a maximal ball [Sherbrooke 96]: 

• A closed ball nrpB ℜ⊂),(  is the set of points q  
such that rqp ≤−  



• A closed ball nrpB ℜ⊂),( is maximal  with respect to 
Ω  if it is contained in Ω , but not in any other closed 
ball contained in Ω . 

• Skeleton of Ω  is the locus of the centers of all 
maximal balls of Ω , plus the limit points of the locus. 

• Radius function  at a point on the skeleton is the 
radius of associated maximal ball.  

The s-rep of a 2-D L-bracket is illustrated in Figure 3-1.  A 
mathematical analysis of s-reps can be found in [Choi 97], 
[Calabi 68], [Sherbrooke 96].  

s
R(s)

 
Figure 3-1: S-rep of an L-bracket. 

We shall assume here that the skeletal representation 
of a 2-D solid can be computed using, for example, the 
techniques proposed in [Meshkat 87], [Srinivasan 87], 
[Ramanathan 02]. Techniques for 3-D computation of a s-
rep may be found in [Sapidis 91], [Hoffman 94], 
[Turkiyyah 97],  [Etzion 99], [Etzion 02]. 

 3.1 S-Voronoi Decomposition 

 The theory developed in this paper is restricted to 
geometrically complex thin solids whose skeletal branches 
are of dimension ‘n-1’ and terminate at the boundary. 
Polygons and polyhedrons, for example, exhibit this 
property [Blum 78], [Nackman 82]. Such solids posses a 
convenient S-Voronoi decomposition discussed below.  
 On the other hand solids such as the one illustrated in 
Figure 3-2 are not considered here since one of the skeletal 
branches terminates in the interior of the domain. We 
expect to extend the theory to such solids in a forthcoming 
paper.  

Interior Skeletal Point  
Figure 3-2: Interior skeletal point. 

 Focusing our attention on thin 2-D solids, let 
( ))(),( ss ii ηξ , Ni ≤≤1  be the N  skeletal branches of a 
solid, where s  is the arc length parameter ranging from 0 
to il , the length of the skeletal branch. Further, let )(sRi , 

Ni ≤≤1  be the associated radius functions. Given a triple 
( ))(),(),( sRss iii ηξ  we define the following.  

 Define )(siα  to be the angle made by the tangent at 

( ))(),( ss ii ηξ  to the global x axis, i.e., 
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Further, let )(siθ  be the angle between the tangent vector, 
and the vector to the nearest boundary point. One can show 
that [Blum 78]: 
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Figure 3-3 illustrates a skeletal branch that is a bisector of 
two boundary segments, and the definition of α  and θ . 

x

y
+Ωi

−Ωi

skeleton
boundary

θ

 
Figure 3-3: Geometry of a skeletal curve. 

One can now associate two sets +Ωi  and −Ωi with each 

skeletal triple ( ))(),(),( sRss iii ηξ  as follows: 
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The sets +Ωi  and −Ωi  lie on the left and right side, 
respectively, of a directed skeletal branch, as illustrated in 
Figure 3-3. Equations (3-1) and (3-2) are transformations 

from ( ){ }10,0, <≤≤≤=Ψ κκ ii lss  to ±Ωi .  
 If none of the skeletal branches terminate in the 
interior, then one can show that the solid can be expressed 
via the following S-Voronoi decomposition: 

  ( )U
i

ii
−+ Ω+Ω=Ω  (3-3) 

On the other hand, if there are internal terminal points for a 
skeleton, then the decomposition has additional terms: 
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 We use the term S-Voronoi decomposition to 
distinguish it from the standard Voronoi decomposition 
[Srinivasan 87], the latter being a coarser version of the 
former. For example, Figure 3-4 illustrates the difference 
between the two for a rectangle.  

(a) S-Voronoi decomposition

(b) Voronoi decomposition  
Figure 3-4: S -Voronoi versus Voronoi decomposition. 



 Observe in Figure 3-4a that the S-Voronoi 
decomposition consists of 10 sub-domains, 2 sub-domains 
per skeletal branch. On the other hand, Figure 3-5b consists 
of 4 sub-domains, one per boundary segment. 
 Figure 3-5a illustrates the S-Voronoi decomposition of 
the dovetail consisting of 26 sub-domains. Figure 3-5b is a 
detailed view of Figure 3-5a about the left reentrant corner. 

  

Figure 3-5: S-Voronoi decomposition of dovetail. 

 We shall assume here that the solid can be 
decomposed per Equation (3-3). If such is the case, then the 
boundary of the solid can also be decomposed as: 

 ( )U
i

ii
−+ Γ+Γ=Ω∂  (3-5) 

where the two boundary curves )(si
+Γ  and )(si

−Γ  are 

obtained by setting 1=κ  in Equations (3-1) and (3-2):  

3.2 Jacobian Transformation 

 For transformations given by Equations (3-1) & (3-2), 
one may define standard Jacobians matrices [Bronshtein 
85] that are employed in Section 4 of this paper: 
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By definition, we have: 
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One can show that the determinant of the Jacobian is given 
by: 

 )(sin),( ,, sisiiiii RRsJ αθκθκ +±−±=±  (3-8) 

The determinant will be employed in Section 4 in the 
transformation of area integrals between the ),( yx  space 
and the ),( κs  space. For polygons, the expression for the 
determinant can be vastly simplified by observing that a 
skeletal branch is one of three types summarized in Table 
3-1 [Kim 95]. For each of the 3 types, the functions si,θ  

and si,α  appearing in Equation (3-8) simplify significantly, 
as summarized in Table 3-1 below. 
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Line-line Line-segment 0 0 
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Table 3-1: Types of skeletal branches. 

 Finally, one can show that the Jacobian transformation 
defined per Equation (3-6) is invertible, i.e., the 
determinant is non-zero, in the interior of a domain. Thus, 
we have: 
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4. PROPOSED METHOD 

 In this section, we propose a generalized Kantorovich 
method for a variational formulation, using the variational 
statement of the Poisson’s equation as a vehicle: 
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Subject to: Ω∂∈Γ=   ),(for   )( ˆ yxuU  
The proposed method consists of the following steps. 
Step-1: The first step is to compute the skeletal 
representation of the solid, and to express the solid as an S-
Voronoi decomposition as in Equation (3-3). We assume 
that this can be carried out using one of technique proposed 
in [Meshkat 87] or [Etizon 99]. Due to the decomposition, 
the above minimization problem simplifies to: 
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Step-2: The next step is to exploit the Jacobian 
transformation described in Section 3, to make a variable 
change ( ) ( )κ,, syx →  in Equation (4-2): 
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We then define a set of generalized Kantorovich trial 

functions ),( κsU i
±  that satisfy:  



• Admissibility criterion 
• Completeness criterion  
• Conformance criterion 
• Essential boundary conditions.  
These requirements are identical to the ones imposed on 
finite element trial functions to ensure convergence [Strang 
73], and are discussed below. 
Admissibility: For the Poisson problem, the admissibility 

criterion states that the trial functions must be at least 0C  
continuous across the boundaries of adjacent sub-domains 
in the (x, y) space. In Figure 3-5, sub-domain 1 is adjacent 
to sub-domains 2, 3 and 4. The trial functions defined in 

region 1 must therefore be at least 0C  continuous with the 
trial functions in 2, 3 and 4.  

 Observe that there are two types of adjacency. The 
first type (type-1) involves regions that share a common 
skeletal branch; the adjacency between regions 1 and 2 is of 
this type. Since a skeletal branch corresponds to 0=κ  in 
Equations (3-1) and (3-2) type-1 adjacency requires that 

)0,()0,( sUsU ii
−+ = . 

 On the other hand, in a type-2 adjacency, neighboring 
regions (example: 1 and 3) do not share a common skeletal 
branch but a common branch-point. This corresponds to 

0=s  or ils =  in Equations (3-1) and (3-2), leading to 
compatibility conditions that describe how unknown 
functions defined on one skeletal branch are related to 
unknown functions over neighboring skeletal branches. 
Completeness: Next consider the completeness criterion. 
Recall that a polynomial )(κg  is complete up to order m , 

if )(κg  contains mκκκ ,...,, 10 . We impose a similar 
condition with respect to the thickness variable κ  on 

),( κsU i
±  

Conformance : In the posed problem, the requirement for 
conforming trial functions is the same as the admissibility, 

i.e., the trial functions must be at least 0C  continuous 
across the boundaries of adjacent domains.  

Boundary Conditions: Finally, ),( κsU i
±  must satisfy 

essential boundary conditions on ±Ωi . Let )(swi
±  is the 

Dirichlet boundary condition on the boundary curve 

)(si
±Γ . The trial functions must therefore satisfy 

)()1,( swsU ii
±± =  

Trial Functions of type 0C : Consider the following trial 
functions, where { })(sui  are unknown functions:   

 { }κκκ )()1)((),( swsusU ii
++ +−=  in +Ωi  (4-4a)  

 { }κκκ )()1)((),( swsusU ii
−− +−=  in −Ωi   (4-4b)  

One can verify that ),( κsU i
±  satisfy all the above 

requirements (additional compatibility conditions must be 
imposed on )(sui  at branch points). 

Trial Functions of type 1C : While the above trial functions 
meet the necessary requirements, better convergence can be 

expected if higher order continuity is imposed. For 
example, one can show that the following trial functions 

satisfy 1C  continuity: 
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where { })(),( sqsu ii  are unknown functions (compatibility 
conditions must be imposed on { })(),( sqsu ii  at branch-

points in order to have 1C  continuity for type-2 
adjacency). Henceforth, we assume that the trial functions 

for the Poisson’s equation are of type 1C  and are given by 
Equations (4-5a) and (4-5b).  
  
Step-3: The next task is to substitute Equations (4-5a) and 
(4-5b) in Equation (4-3) and carry out a symbolic 
integration over the thickness variable κ . As stated earlier, 

the task is vastly simplified since ),( κsU i
±  involves low 

order polynomials. This task was executed using 
Mathematica, a symbolic software package. 
 Once κ  is eliminated, the problem reduces to solving 

for { }N
iii sqsu 1)(),( =  in: 

( )( )∑ ±Π=Π
i

siissisiii qquuuUMinimize ,,, ,,,,)(    (4-6) 

subject to compatibility conditions at branch points.  
Step-4: The final step is to apply a finite element 
procedure to minimize Equation (4-6) in an approximate 
sense using finite element approximation is standard 
[Shames 85]. We do not discuss the details here, except to 
note that we employ a Hermitian approximation of )(sui  

and a linear approximation of )(sqi . 

5. NUMERICAL EXPERIMENTS 

 In the previous section, we enforced all the required 
conditions to ensure convergence of the proposed method. 
In order to study the accuracy of the proposed method, we 
consider a few field problems whose exact solutions are 
known. In addition, a few problems with no known closed-
form solutions are also considered, and the results are 
compared to finite element solutions. 
 Recall that the Kantorovich method consists of two 
distinct approximation stages (Figure 1-2): 
• Stage 1: Approximation via Kantorovich trial functions 
• Stage 2: Approximation via finite element trial functions. 
Each stage introduces an approximation error, referred to as 
stage-1 and stage-2 error. Depending on the problem, one 



or both errors may be present. We measure the total 
numerical error using a pair of normalized ∞L  errors: 
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uu
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qq
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=  

Experiment 1 

 The first numerical experiment involves solving the 

Laplace equation 0),(2 =∇ yxU  over 2 convex solids: (a) a 
rectangle of length 1 and height 0.1, (b) an equilateral 
triangle of side 1. Dirichlet boundary conditions are 
specified and their values are such that the exact solution is 

a quadratic field “ )(2.0)(),( 22 yxyxyxU ++−= ”.  
 Note that for convex solids, the geometric 
transformation between (s,κ) space and (x, y) space, given 
by Equations (3-1) and (3-2), is linear. Thus the quadratic 
Kantorovich trial functions of Equation (4-5) and (4-5) are 
sufficient to capture the field exactly, i.e., one would expect 
the stage-1 error to be theoretically zero.  
 Further, in the finite element approximation, we have 
employed a quadratic approximation of )(ˆ su  and a linear 
approximation of capture )(ˆ sq . Thus stage-2 error is also 
expected to be theoretically zero. Both these expectations 
are confirmed in Table 5-1. 
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)(2.0
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22

yx
yxyxU   

#Finite Elements  ~5 

uE  qE  

Rectangle  1210−  1110−  
Triangle 1210−  1110−  

Table 5-1: Normalized errors for Experiment 1. 

The computed solution )(ˆ su  over the skeleton of the 
triangle is illustrated in Figure 5-1. This experiment 
suggests the generality of the proposed technique. In 
contrast, a ‘mid-element’ based Kantorovich method is 
inconceivable for the triangle. 

 
Figure 5-1: Computed solution over the skeleton. 

Experiment 2 
 The next set of numerical experiments is similar to the 
first except that the exact solution is a Laplacian field 

“ )3(),( 23 xyxyxU −= ” over a rectangle of length 1 and 
height 0.1. We would expect to see stage-1 inaccuracy 
since the exact field is cubic while the approximating 
Kantorovich functions are quadratic. Stage-2 inaccuracy is 
expected to diminish with increasing number of elements. 
The normalized errors are summarized in Table 5-2. As 
expected, the errors diminish with increased number of 
elements, but never reach zero due to the presence of stage-
1 error. 
 

)3(),( 23 xyxyxU −=   
Rectangle (1x 0.1) 

uE  qE  

#Finite Elements = 5  45 −e  0211.0  

#Finite Elements =13 573.2 −e  0022.0  

#Finite Elements = 23 646.7 −e  46 −e  
#Finite Elements = 80 66 −e  405.1 −e  
#Finite Elements = 200 66 −e  475.0 −e  

Table 5-2: Normalized errors for Experiment 2. 

Experiment 3 

 The third set of numerical experiment involves solving 

the Poisson’s equation 2),(2 −=∇ yxU  over two non-
convex solids (a) dovetail (Figure 2-4), and (b) a modified 
L-bracket (see Figure 5-2). Dirichlet boundary conditions 
are specified and their values are such that the exact 

solution is the Poisson field “ 2/)(),( 22 yxyxU +−= ”.  

 
Figure 5-2: A modified L-bracket. 

 The normalized errors are summarized in Table 5-3. 
The major contributor to the total error is stage-1. Observe 
that geometrically complex domains can be handled with 
equal ease.  

Field: 2/)( 22 yx +−  
#Finite elements: 100 

uE  qE  

Dovetail 310−  210−  
L-bracket 410−  210−  

Table 5-3: Normalized errors for Experiment 3. 

The computed solution over the modified L-bracket is 
illustrated in Figure 5-3.  



 
Figure 5-3: Computed solution on the skeleton of 

a modified L-bracket. 

Experiment 4 

 The final set of numerical experiments involves 
computing torsional stiffness for various 2-D cross-
sections. Closed-form solutions typically do not exist for 
such problems, barring a few exceptions. We assume here 
that Saint Venant’s torsional assumptions hold true [Pilkey 
02], [Chou 92]. For solids without holes, the problem 

reduces to solving 22 −=∇ ϕ  in Ω  and 0=ϕ  in Ω∂ , 
where ϕ  is the Prandtl’s function … then computing the 

torsional stiffness given by ∫ Ω= dJ ϕ2 .  

 Note that this experiment goes beyond just computing 
the two unknown functions )(ˆ su  and )(ˆ sq  over the 
skeletal functions in that an integral of the 2-D solution 
over the entire domain must be computed. 
 We first consider the simple case of a thin rectangle 
whose torsional stiffness is known in closed-form. Figure 
5-4 illustrates the computed Prandtl’s function ϕ  over the 
skeleton of a rectangle of dimensions 05.0,1 == HL .  

 
Figure 5-4: Prandtl’s function ϕ  over the skeleton 

of a thin rectangle. 

The exact, computed and St. Venant’s estimate for the 
stiffness of a rectangle for 2 different aspect ratios are 
summarized in Table 5-4. 

 
 Exact  Proposed 

method 
#Elements 

=20 

Proposed 
method 

#Elements 
=200 

St. 
Venant’s 
Estimate 

L=1; 
H=0.1 

4123.3 −e  40228.3 −e  
(96.8%) 

4076.3 −e  
(98.5%) 

4333.3 −e  
(106.7%) 

L=1; 
H=0.05 

5035.4 −e  59105.3 −e  
(96.9%) 

5001.4 −e  
(99.1%) 

51667.4 −e  
(103.2%) 

Table 5-4: Torsional stiffness estimates for a 
rectangle. 

Further examples appear in Table 5-5. St. Venant’s 
estimate of the torsional stiffness is implicitly based on a 
mid-element representation; it leads to fairly accurate 
estimate stiffness for solids such as the rectangle and I-
beam, but is inaccurate, as one would expect, for 
geometrically complex solids such as the dovetail 

 2-D FEM 
Estimate 

#Finite 
Elements 

=100 

St. Venant’s 
Estimate 

I-Beam 94208.2 −e  94009.2 −e  
(99.1%) 

9395.2 −e  
(98.9%) 

Dovetail 440112.1 −e  43832.1 −e  
(98.7%) 

4875.1 −e   
(133.1%) 

Table 5-5: Torsional stiffness estimates for 
irregular geometry. 

6. INCLUSION OF SINGULARITIES 

 In Sections 4 and 5 we used polynomials of κ  as trial 
functions – Equations (4-5a) and (4-5b) – to approximate 
an unknown field ),( κsU . Polynomials are sufficient if the 
field is sufficiently smooth or if only a global property of 
the field is desired. However, elliptic fields often exhibit 
singularities at the boundary that must be captured to 
predict, for example, failure of a stressed member.  
 The most common source of a  singularity is the reflex 
or reentrant corner where the internal angle between two 

adjacent boundary edges exceeds 0180 . Figure 6-1 
illustrates an example of a reentrant corner with an interior 
angle of α . 

αθ
r

 
Figure 6-1: Singularity at a reentrant corner. 

 The nature of the singularity near a reentrant corner 
depends on the boundary conditions on the adjacent edges, 
and can be determined a priori up to an unknown constant. 
For example, let a field ),( yxU satisfy the Poisson’s 
equation over the domain in Figure 6-1, and let zero 
Dirichlet boundary conditions be specified over the entire 
domain. Then the first term of the singularity near the 



reentrant corner of Figure 6-1 in polar coordinates is given 
by [Strang 73]: 

 




=

α
θπ

θ α
π

sin),( KrrU  

where K is an unknown constant to be determined.  
 Unfortunately, polynomial trial functions cannot 
capture such singularities accurately. We propose here a 
simple strategy  by augmenting polynomial functions with 
explicit singularity functions; this is similar to how 
singularities are handled in classic finite element analysis 
[Strang 73]. The proposed strategy is as follows: 
1. First create an artificial ‘singularity region’ of radius 

ε  centered about the reentrant corner, as illustrated in 
Figure 6-2. 

2. Then represent the field in the ε -region by a 
singularity function, and elsewhere, by polynomial 
trial functions as before. 

3. Finally enforce 0C or 1C  continuity, as appropriate, 
along the common boundary of the ε -region. 

ε-region

 

Figure 6-2: Isolation of the ε -region 

At the present time, we have not implemented the above 
strategy, and expect to do so in the future. 

7. CONCLUSIONS 

The preciseness and algorithmic nature of the 
proposed method leads to a high degree of automation and 
accuracy. Standard solid modeling, finite element and 
graph theoretical concepts are sufficient, i.e., ‘special’ 
modeling techniques used in mid-element based techniques 
are not required. The proposed method permits use of 
singularity functions if desired.  

On the other hand, there are two significant challenges  
associated with the proposed method: (1) it requires the 
computation of a skeletal representation; while this is 
known to be a hard problem, especially in 3-D, recent 
research, example, [Etizon 02], is promising, and (2) the 
skeleton is ‘sensitive’ to small changes or representational 
inaccuracies in the boundary [Rezayat 96], and may require 
‘smoothening’ or de-featuring [Donaghy 96]. 
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