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ABSTRACT

An “adaptive” variant of Ruppert’s Algorithm for producing quality triangular planar meshes is introduced. The
algorithm terminates for arbitrary Planar Straight Line Graph (PSLG) input. The algorithm outputs a Delaunay
mesh where no triangle has minimum angle smaller than 26.45◦ except “across” from small angles of the input. No
angle of the output mesh is smaller than arctan [(sin θ∗)/(2 − cos θ∗)] where θ∗ is the minimum input angle. Moreover
no angle of the mesh is larger than 137.1◦. The adaptive variant is unnecessary when θ∗ is larger than 36.53◦, and
thus Ruppert’s Algorithm (with concentric shell splitting) can accept input with minimum angle as small as 36.53◦.
An argument is made for why Ruppert’s Algorithm can terminate when the minimum output angle is as large as 30◦.
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1. INTRODUCTION

The Delaunay Refinement Algorithm, first described
by Ruppert, accepts a set of points and a set of seg-
ments, augments the point set with Steiner points, and
returns the Delaunay Triangulation of the augmented
set. For suitable input, the triangulation conforms to
the input, has no angle smaller than some parameter-
izable κ (which is no larger than arcsin 1

2
√

2
≈ 20.7◦),

and exhibits “good grading,” i.e., short edges in the
triangulation are attributable to nearby input features
which are close together. The number of triangles in
the output is within a constant of optimal [1].

The algorithm has the advantage of being relatively
easy to state and implement, and has been the object
of great scrutiny and interest. Since its introduction,
the algorithm and the analysis of the algorithm have
been improved and modified: the class of known ac-
ceptable input has been expanded [2]; a variant algo-
rithm has been developed to handle small input angles
[3]; the algorithm has been adapted to accept curved
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input [4]; it also has been generalized to higher dimen-
sions [2, 5, 6, 7].

Ruppert’s original analysis required that no input seg-
ments meet at acute angles, and guaranteed that no
angle in the output was smaller than a parametrizable
κ < arcsin 1

2
√

2
. As κ ↗ arcsin 1

2
√

2
, the proved bound

on the number of Steiner Points approaches infinity
[1], though this behaviour is not seen experimentally;
rather, the Delaunay Refinement Algorithm is often
run with κ as great as π/6 or greater without diverg-
ing. The input condition has been relaxed to a π/3
lower bound on input angles [3, 5]. The algorithm has
been observed to terminate on some input with smaller
(in some cases much smaller) input angles.

Shewchuck demonstrated an alteration of the algo-
rithm, the so-called “Terminator,” which accepts in-
put with arbitrary minimum angle, θ∗, producing De-
launay meshes with no output angle smaller than

arcsin
�
sin � θ∗

2 � /
√

2 � . This variant is adaptive in the

sense that it leaves some small angles in the output
mesh, while most angles are larger than arcsin 1

2
√

2
.

The location of the small output angles cannot be de-
termined very much beyond the statement that they
are “near input angles less than . . . 60◦.” Moreover, the



analysis of this scheme comes without grading guaran-
tees, and thus no optimality claim [3].

We here demonstrate an alteration of the algorithm
which outputs meshes where all output angles are
greater than arcsin 2−7/6 ≈ 26.45◦, except those
whose shortest edge is “opposite” an input angle
θ < 36.53◦; in this case, the output angle is no less

than arctan � sin θ
2−cos θ � . Moreover, in spite of the po-

tential of arbitrarily small output angles, this algo-
rithm can guarantee that no output angle is larger

than around π − 2 arcsin
√

3−1

2
≈ 137.1◦. In this sense

the algorithm contrasts favorably with the Termina-
tor, which has no upper bound other than the näıve

one of π − 2 arcsin
�
sin � θ∗

2 � /
√

2 � , which deteriorates

when θ∗ is small. Moreover, our algorithm comes with
grading and optimality guarantees, and is fairly sim-
ple.

In the case where θ∗ ≥ 36.53◦, our analysis shows that
the variant algorithm is unnecessary, and that Rup-
pert’s original algorithm with circular shell splitting
comes with the same output and optimality guaran-
tees.

In this work we employ the strategy of Shewchuk [2],
i.e., termination is proved without showing good grad-
ing. This is done since a relatively accessible and com-
plete proof of the “termination-only” result may be
given in the limited amount of available space. The
proof of good-grading is quite a bit more involved [8].

2. THE MESHING PROBLEM

The meshing problem is described in terms of the input
to the algorithm and the expected conditions on the
output. The input to the mesher is defined as follows:

Assumption 2.1 (Input). The input to the meshing
problem consists of a finite set of points, � ⊆ � 2 , and
a set of segments � such that

(a) the two endpoints of any segment in � are in � ,
(b) any point of � intersects a segment of � only at

an endpoint,
(c) two segments of � meet only at their endpoints,

and
(d) the boundary of the convex hull of � is the union

of segments in � .

Let Ω denote the convex hull of the input, and let
0 < θ∗ ≤ π/3 be a lower bound on the angle between
any two intersecting segments of the input.

Items (a)-(c) characterize ( � , � ) as a Planar Straight
Line Graph (PSLG); item (d) can always be satisfied
by augmenting an arbitrary PSLG which does not sat-
isfy it with a bounding polygon (typically a rectangle).

The restriction that θ∗ ≤ π/3 is merely for conve-
nience; asserting a larger lower bound does not give
any better results.

Assumption 2.2 (Output). The algorithm outputs
sets of points, segments, triangles, � ′, � ′, � ′, respec-
tively, satisfying:

(a) Complex: The output collectively forms a sim-
plicial complex, i.e., {∅} ∪ � ′ ∪ � ′ ∪ � ′ is closed
under taking boundaries, and under intersection.

(b) Delaunay: Each triangle of � ′ has the Delaunay
property with respect to � ′.

(c) Conformality: � ⊆ � ′, and for every s ∈ � , s is
the union of segments in � ′.

(d) Quality: There are few or no “poor-quality” tri-
angles in � ′.

(e) Cardinality: Few Steiner points have been
added, i.e., | � ′ \ � | is small.

One passable definition of item (d) is that there are
some reasonably large constants 0 < α ≤ ω ≤ π+α

4

such that for every triangle t ∈ � ′, no angle of t is
smaller than α or larger than π − 2ω. However, such
a guarantee is not consistent with conformality of the
triangulation (item (c)) when the input contains an-
gles less than α. A weaker definition is that most tri-
angles satisfy the above condition, and those that do
not (a) are describably near an input angle of size θ,
(b) have no angle smaller than θ−O � θ2 � , and (c) have
no angle larger than π − 2ω.

3. THE ALGORITHM

We describe a whole class of algorithms, which we col-
lectively refer to as “the” Delaunay Refinement Algo-
rithm. This class contains Ruppert’s original formula-
tion [1], as well as the incremental version [5].

We suppose that the algorithm maintains a set of
“committed” points, initialized to be the set of input
points, � . The algorithm also maintains a set of “cur-
rent” segments, initialized as the input set, � . The al-
gorithm will “commit” points to the set of committed
points. At times the algorithm will choose to “split”
a current segment; this is achieved by removing the
segment from the set of current segments, adding the
two half-length subsegments which comprise the seg-
ment to the set of current segments, and committing
to the midpoint of the segment. The word “midpoint”
should be taken to mean one of these segment mid-
points for the remainder of this work, to distinguish
them from the other kind of Steiner Point, which will
be called “circumcenters.”

The algorithm has two high-level operations, and will
continue to perform these operations until it can no
longer do so, at which time it will output the com-
mitted points, the current segments and the Delaunay



Triangulation of the set of committed points. For con-
venience, we say that a segment is “encroached” by a
point p if p is inside the diametral circumball of the
segment. Then the two major operations are as fol-
lows:

(Conformality) If s is a current segment, and
there is a committed point that encroaches s,
then split s.
(Quality) If a, b, c are committed points, the cir-
cumcircle of the triangle ∆abc contains no com-
mitted point, triangle ∆abc has an angle smaller
than the global minimum output angle, κ, and the
triangle’s circumcenter, p is in Ω, then attempt to
commit p. If, however, the point p encroaches any
current segment, then do not commit to point p,
rather in this case split one, some, or all of the
current segments which are encroached by p.

It should be clear that if the algorithm terminates then
every segment of the set � has been decomposed into
current segments, none of which are encroached by
committed points, and thus have the Delaunay prop-
erty with respect to the final point set, and are thus
present in the output Delaunay Triangulation. The
algorithm clearly never adds any points outside Ω. It
is simple to show that if the algorithm terminates, no
triangle in the Delaunay Triangulation has an angle
smaller than the minimum output angle κ, though we
omit the proof [8].

The Adaptive Delaunay Refinement Algorithm substi-
tutes operation (Quality) with the following opera-
tion (Quality′):

(Quality′) If a, b, c are committed points, the
circumcircle of the triangle ∆abc contains no
committed point, � acb < κ̂, the circumcenter,
p, of the triangle is inside Ω and either (i) both
a, b are midpoints on distinct nondisjoint input
segments, sharing input endpoint x, and � axb >
π/3, or (ii) a, b are not midpoints on adjoining
input segments, then attempt to commit p. If,
however, the point p encroaches any current seg-
ment, then do not commit to point p, rather in
this case split one, some, or all of the current
segments which are encroached by p.

In summary, the algorithm removes angles smaller
than κ̂ except when the opposite edge spans a small
angle in the input, in which case the small output an-
gles are ignored. For this variant we call κ̂ the output
angle parameter ; the output mesh may well contain
angles smaller than κ̂. We will let α be the minimum
angle in the output mesh.

The heuristics involved with determining which op-
eration to perform when and on which segment or
poor-quality triangle are not relevant to our discus-
sion. This is not to say that they might not affect ease

of implementation, running time, cardinality of the fi-
nal set of committed points, parallelizability, etc. A
common heuristic (and the one chosen by Ruppert and
others) is to prefer conformality operations over qual-
ity operations, which likely results in a smaller output,
and which simplifies detecting that a circumcenter is
outside of Ω. A description of a member of this class
of algorithms would have to include some discussion
of how to figure out which current segments are en-
croached, which triangles are suitable for removal via
the quality operation, how to deal with degeneracy,
etc. We do not concern ourselves with these details
(though see [9, 10, 11, 5, 12, 2, 13]).

3.1 When is Adaptivity Necessary?

We here make the claim that the Delaunay Refinement
Algorithm is as good as its adaptive variant when the
latter is used with a small output angle parameter κ̂.
The claim is formalized as follows:

Claim 3.1. Suppose that we can guarantee that if the
Adaptive Delaunay Refinement Algorithm is run with
output angle parameter κ̂, on any appropriate input
with minimum input angle θ∗, that (a) the algorithm
terminates, (b) no angle of the output mesh is smaller
than κ̂, and (c) no angle is larger than π − 2ω.

Then if the Delaunay Refinement Algorithm is run on
any appropriate input with minimum input angle θ∗,
using output angle parameter κ = κ̂, then (a) the al-
gorithm terminates, (b) no angle of the output mesh is
smaller than κ, and (c) no angle is larger than π− 2ω.

Proof. The Adaptive Delaunay Refinement Algorithm
only attempts to remove a Delaunay triangle if it has
minimum angle smaller than κ̂. Moreover, it pro-
duces meshes with no angle smaller than κ̂. Then the
(Quality′) operation could be rewritten as follows:

(Quality′) If a, b, c are committed points, the
circumcircle of the triangle ∆abc contains no
committed point, � acb < κ̂, and the circumcen-
ter, p, of the triangle is inside Ω then attempt to
commit p. If, however, the point p encroaches any
current segment, then do not commit to point p,
rather in this case split one, some, or all of the
current segments which are encroached by p.

This is the same as the operation (Quality) of the
Delaunay Refinement Algorithm.

By “appropriate,” we refer to the fact that, as stated,
both algorithms require some added assumption about
edge lengths (cf. Assumption 4.2). The restriction can
be removed if splitting on concentric shells is used to
put input into the required form on an “as-needed”
basis, as argued in Section 9.



Thus we will first examine the adaptive variant, then
use the results to analyze the regular Delaunay Refine-
ment Algorithm.

The analysis that follows should be read with a tacit
understanding that it can be applied to the Delaunay
Refinement Algorithm as well, if κ is set propertly. For
example, it will be shown that if an input with θ∗ ≈
36.53◦ conforms to Assumption 4.2, then the Adaptive
Delaunay Refinement Algorithm with κ̂ = 26.45◦ will
terminate leaving no angle in the output mesh smaller
than κ̂, and no angle larger than π − 2κ̂. Then we can
immediately claim that the Delaunay Refinement Al-
gorithm (i.e., Ruppert’s Algorithm) with κ = 26.45◦

will also terminate on the same input, and with the
same grading guarantees.

So the adaptive variant is only necessary if θ∗ is small,
say smaller than about 36.53◦. When θ∗ is small, the
adaptive variant will remove small angles where this
is possible, i.e., away from small input angles.

4. PRELIMINARIES

Some preliminary definitions and results are essential
to the exposition. First there is the matter of terminol-
ogy: if p is a committed point that was the midpoint
of a segment, we say this segment is the “parent” seg-
ment (or parent subsegment) of p; the “radius” of a
segment is half its length, while the radius associated
with a midpoint is the radius of its parent segment;
any segment derived from a segment s ∈ � by splitting
is a “subsegment” of (or on) s; segments in � which
share an endpoint are nondisjoint; distinct nondisjoint
segments are said to be “adjoining.”

Throughout this work, we let |x − y| denote the Eu-
clidian distance between points x and y. For a segment
S, we let |S| denote the length of the segment. Local
feature size is defined in terms of the input, and is the
classical definition due to Ruppert:

Definition 4.1 (Local Feature Size). For a point
x ∈ � 2 , the local feature size at x, relative to an input
PSLG, ( � , � ), is the minimum r such that a closed ball
of radius r centered at x intersects at least two disjoint
features of � ∪ � . The local feature size is a Lipschitz
function, i.e., lfs (x) ≤ |x − y| + lfs (y) .

This definition is illustrated in Figure 1.

For the proof we require an extra condition on the
input:

Assumption 4.2. In addition to those of Assump-
tion 2.1 we make the following assumption:

(a) If S1, S2 are two adjoining input segments that
meet at angle other than π, then they have the
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Figure 1: For a number of points in the plane, the local
feature size with respect to the given input is shown.
About each of the points u, v, w, x, y, z is a circle whose
radius is the local feature size of the center point. The
point u is an input point.

same length modulo a power of two, that is |S1|
|S2| =

2k for some integer k.

It is simple to show that this assumption can be satis-
fied by the addition of no more than 2 | � | augmenting
points, effectively redefining the input [8]. Later we
will argue that Ruppert’s strategy of splitting on con-
centric circular shells obviates this additional assump-
tion [1].

5. MIDPOINT-MIDPOINT
INTERACTIONS

Ruppert noted that one way his algorithm could fail
was due to infinite cascades of segment midpoints
each encroaching on an adjoining subsegment; the pre-
scribed cure was concentric shell splitting [1], which
puts input into a form which satisfies Assumption 4.2
on an as-needed basis. To simplify the proof, we as-
sume the input satisfies this assumption up-front, then
ease the restriction later. In this section we show how
this assumption can prevent infinite cascades of mid-
points.

The classic result on Ruppert’s Algorithm for input
satisfying a π/3 angle condition can be proven with
the following purely geometric lemma [8].

Lemma 5.1. Given two rays, R and R′ from a point
x with angle θ between them, suppose there is a ball of
radius r with center p on ray R such that the ball does
not contain x but does contain a point q of R′. Then
if π/4 ≤ θ < π/2,

|q − x|
|p − x| ≤

|q − x|
r

<
|q − x|
|p − q| ≤ 2 cos θ.



Given the π/3 angle condition, the right hand side
of the inequality in the lemma is no greater than
1. Roughly this guarantees that radii do not “dwin-
dle,” or in terms of Shewchuk’s dataflow diagrams, the
midpoint-midpoint loop does not admit a decrease in
insertion radius [2].

The following lemma makes the same guarantees, but
for input which satisfy Assumption 4.2. The lemma
explicitly states that the radii are non-dwindling,
though note these are actual segment radii, not
Shewchuk’s insertion radii, which is also known as
nearest neighbor distance. Using the non-dwindling
property of segment radii, we will prove termination
of the algorithm by demonstrating a lower bound on
a segment’s radius at time of splitting.

This lemma takes care of the case where a midpoint
encroaches a segment on a nondisjoint input feature.
In the following sections, we consider another way in
which a midpoint can trigger such a segment split,
namely via sequences of triangle circumcenters.

Lemma 5.2. Suppose that the input conforms to As-
sumption 4.2. Let p be the midpoint of a segment which
is encroached by a committed point, q, on an adjoining
input segment. Let rp be the radius associated with p,
and rq that of q. Then rq ≤ rp, and moreover,

|p − q| ≥ 2rq sin
θ

2
,

where θ is the angle between the two input segments.

Proof. Let (x, y) , (x, z) be the two input segments
containing, respectively, p, q. Let (a, b) be the subseg-
ment of which p is midpoint. Let (c, d) be that for
which q is midpoint. Assume that a is closer to x than
b is, and assume c is closer to x than d is. It may be
the case that x = a, or x = c.

It is easy to show that, log2

|x−y|
|a−b| , and log2

|x−z|
|c−d| are

nonnegative integers. By Assumption 4.2, and since
θ 6= π, log2

|x−y|
|x−z| is an integer. Thus log2

|a−b|
|c−d| =

log2

rp

rq
= j is also an integer. We wish to show that

it is nonnegative.

A geometric argument gives |x − a| < |x − q| <
|x − b|, so that |x − a| < |x − c| + rq < |x − a| + 2rp.

It then can be shown that k = |x−a|
|a−b| = |x−a|

2rp
is a non-

negative integer, as is, mutatis mutandis, l = |x−c|
2rq

.

Thus

2krp < (2l + 1)rq < 2(k + 1)rp, or

2j+1k < (2l + 1) < 2j+1(k + 1), and so

2l + 1

2j+1
− 1 < k <

2l + 1

2j+1
.

If j is a negative integer, then 2j+1 is a power of two no
greater than 1; in particular it divides any integer, thus

2l+1

2j+1 = m is an integer. This gives the contradiction
that m − 1 < k < m for integer m, k. Thus j is a
nonnegative integer, or rp ≥ rq.

For the second part, we first show that |p − q| ≥
2(|x − q| ∧ |x − p|) sin θ

2
. We consider the case where

|x − q| ≤ |x − p| ; the other case follows mutatis mu-
tandis.

Let L = |x−p|
|x−q| ≥ 1. Using the cosine rule on ∆xpq,

|p − q|2 = |x − p|2 + |x − q|2 − 2 |x − p| |x − q| cos θ.

= (1 + L2) |x − q|2 − 2L |x − q|2 cos θ

≥ 2L |x − q|2 − 2L |x − q|2 cos θ

= 2L |x − q|2 (1 − cos θ),

where we have used that 1+L2 ≥ 2L. Using L ≥ 1, we
obtain |p−q|

|x−p| ≥
�

2(1 − cos θ). It is a simple exercise

to show that 2 sin θ
2

=
�

2(1 − cos θ) for θ ∈ [0, π] .

Now, clearly |x − p| ≥ rp ≥ rq, and |x − q| ≥ rq, so
the result |p − q| ≥ 2rq sin θ

2
holds, as desired.

6. CIRCUMCENTER SEQUENCES

We now consider sequences of triangle circumcenter
additions.

Definition 6.1. A circumcenter sequence is a se-
quence of points, {bi}l−1

i=0
such that for i = 1, 2, . . . , l−

1, bi is the circumcenter of a triangle in which bi−1

is the more recently committed endpoint of an edge
opposite an angle less than κ̂. The point b0 may be an
input point or segment midpoint.

For i = 0, 1, . . . , l − 2, let ai be the other endpoint of
the short edge of which bi is the more recently commit-
ted endpoint. In the case where a0, b0 are both input
points, they are committed simultaneously; we imag-
ine a total order on input points which determines the
tie. Both a0, b0 may be midpoints on distinct, nondis-
joint input segments. In this case we assume that
the triangle with circumcenter b1 was removed by a
(Quality′) operation because of a small angle oppo-
site a0, b0. In particular this means that we assume
the angle subtended by the input segments containing
a0, b0 is at least π/3 in this case.

When talking about such sequences, for i =
1, 2, . . . , l − 1, let r̃i be the circumradius of the trian-
gle associated with bi. Note that r̃i = |bi − bi−1| =
|bi − ai−1| , and that |ai − bi| ≥ r̃i. We let r̃0 =
|b0 − a0| , i.e., the length of the first short edge.

Note that for a circumcenter sequence, {bi}l−1

i=0
, the

points b1, b2, . . . , bl−2 are circumcenters which have
been committed, bl−1 is a circumcenter, though it may
be rejected, and b0 may be any type of point. If b is a
triangle circumcenter, there is always a circumcenter



sequence ending with b, although it may be a trivial
sequence of two elements. Any circumcenter sequence
whose first element, b0, is a triangle circumcenter may
be extended to a maximal sequence whose first element
is either a segment midpoint or an input point.

The following geometric lemma is the key result which
allows us to make the arcsin 2−7/6 output guarantee.
It states that only circumcenter sequences longer than
a certain length can “turn” around a 180◦ feature.

Lemma 6.2. Let S1, S2 be two segments with dis-
joint interiors on a common line, L. Assume that
|S2| ≤ |S1| , i.e., S2 is no longer than S1. Let b0 be
the midpoint of S1, and let a0 be some other point.
Let {bi}l−1

i=1
be a circumcenter sequence such that bl−1

is inside the diametral circle of S2, and such that b1 is
the circumcenter of a triangle with edge (a0, b0) oppo-
site an angle smaller than κ̂. Then l ≥ 4.

Note that unlike in the regular terminology of circum-
center sequences, this lemma makes no assumptions
about which of a0, b0 was committed first. This is why
we have chosen to index the circumcenter sequence
from i = 1 instead of the usual i = 0.

Proof. The basic argument is sketched in Figure 2.
The point b1 is the circumcenter of a triangle whose
circumcircle does not contain the point x, which is the
endpoint of S1 closer to S2. However, this circumcircle
has b0 on it, so b1 must be in the closed halfspace
defined by the bisector of x and b0 and which does not
contain x, as shown in Figure 2(a). Thus b1 cannot
be in the diametral circle of S2, which is in the open
halfspace on the other side of this bisector. Now let
G be the bisector of points b1 and x. Point b2 is the
center of a circle which does not contain x, but has b1

on its boundary, since b1 is one of the vertices of the
triangle which b2 is added to remove. Thus b2 must be
either on the line G, or in the open halfspace defined
by G that is closer to the point b1. In Figure 2(b), this
is the halfspace to the upper right of G.

It then suffices to show that the closure of the diame-
tral ball of S2 is contained in the other open halfspace
defined by G, and thus b2 cannot encroach S2.

Let z be the intersection of L and G; take m to be
the midpoint of S2, and m′ is its projection onto G.
Let x′ be the projection of x onto G. Let y be the
projection of b1 onto L. See Figure 3. The point x is
clearly between m and z, otherwise x would be in the
halfspace closer to b1 than to x, a contradiction. Thus
|m − z| = |m − x| + |x − z| .
By congruency of the three triangles of Fig-

ure 3,
|m−m′|
|m−z| =

|x−x′|
|x−z| = |x−y|

|x−b1| .

Let r = |S2|
2

≤ |S1|
2

, by assumption. Since S1, S2 have

topleft

bottomright
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Figure 2: The head of a circumcenter sequence is shown;
the point b1 must be to the right of the bisector of b0 and
x, and so it cannot encroach S2, which is on the other
side of this bisector, as shown in (a). In (b) the bisector
of b1 and the point x is shown. Since b2 cannot be closer
to x than to b1, and since the diametral circle of S2 is on
the opposite side the bisector, b2 cannot encroach S2. In
this case, a0 is shown to be outside the diametral circle
of S1. This is not a necessary hypothesis for this lemma.
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Figure 3: The geometric heart of the argument is shown,
with three congruent triangles, ∆mm′z, ∆xx′z, ∆xyb1.

disjoint interiors, |m − x| ≥ r. Then |m − z| ≥ r +



|x − z| , so��m − m′ �� =
|x − x′| |m − z|

|x − z| ,

≥ |x − x′| (r + |x − z|)
|x − z| ,

≥ |x − x′|
|x − z| r +

�� x − x′ ��
=

|x − y|
|x − b1|

r +
�� x − x′ �� .

As noted above, b1 is to the right of the bisector of x
and b0, so |x − y| ≥ |x−b0|

2
= |S1|

4
≥ r

2
. Note also that

|x − b1| = 2 |x − x′| . Then��m − m′ �� ≥ r2

4 |x − x′| +
�� x − x′ �� .

The right hand side is minimized when |x − x′| = r
2
,

where the right hand side has value r. Note, however,
that |x − x′| ≥ r̃1

2
≥ 1

2 sin κ̂
|S1|
4

> r
2
, so the right hand

side will be strictly larger than r.

That is, |m − m′| > r, and thus the distance from m
to G, which is |m − m′| , is greater than the radius of
the diametral circle of S2. Then the closed diametral
circle of S2 is contained in the open halfspace opposite
b1, as desired.

This lemma allows us to prove a better output an-
gle for the Delaunay Refinement Algorithm. Previous
proofs required 2 sin κ̂ ≤ 1√

2
; by the lemma, the follow-

ing proof only requires that (2 sin κ̂)3 ≤ 1√
2
. A better

output angle could be guaranteed if the lemma could
be improved; this would have to be via some alter-
nation of the algorithm, as the example of Figure 4
shows the lemma cannot be extended in the näıve set-
ting. We return to this matter later.

Since κ̂ < π/6, we can establish a geometric series
which gives the following lemma and its corollary. The
corollary describes how a segment midpoint which is
not caused by a midpoint encroaching the segment is
caused by some other midpoint or input point.

Lemma 6.3. Suppose {bi}l−1

i=0
is a circumcenter se-

quence. For i > 0, let r̃i be the circumradius associated
with bi. Then for i = 1, 2, . . . , l − 1,

• r̃i−1 < 2r̃i sin κ̂ and therefore r̃i <
(2 sin κ̂)l−1−ir̃l−1, and

• |bl−1 − bi| <
r̃l−1

1−2 sin κ̂
, and |bl−1 − ai| <

r̃l−1

1−2 sin κ̂
.

Proof. By definition, bi is the circumcenter of a tri-
angle of radius r̃i, which has a short edge no shorter
than r̃i−1 opposite an angle less than κ̂. By the sine
rule, then 2r̃i sin κ̂ > r̃i−1.

���

� ����� 	�
 �
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Figure 4: A circumcenter sequence, {bi}3

i=0
, is dis-

played, which shows that Lemma 6.2 cannot be extended.
The segments S1, S2 are shown, with their diametral cir-
cles. The points b1, b2, b3 are circumcenters of triangles
(shown) with an angle smaller than π/6. The point b3

encroaches S2.

Using this repeatedly gives r̃i < (2 sin κ̂)l−ir̃l−1. Since
2 sin κ̂ < 1, we may bound the distance from bi to bl−1

by the geometric series, as follows:

|bl−1 − bi| ≤ |bl−1 − bl−2| + |bl−2 − bl−3| + . . .

+ |bi+1 − bi| ,
≤ r̃l−1 + r̃l−2 + . . . + r̃i+1,

< r̃l−1 + (2 sin κ̂)r̃l−1 + . . .

+(2 sin κ̂)l−i−2r̃l−1,

<
1

1 − 2 sin κ̂
r̃l−1.

The bound for |bl−1 − ai| follows since |bi+1 − ai| =
|bi+1 − bi| = r̃i+1, and the above analysis suffices.

Corollary 6.4. Suppose that segment sp with mid-
point p and radius r was split, but the segment was not
encroached by a committed point. Then there is some
maximal circumcenter sequence {bi}l−1

i=0
such that bl−1

“yielded” to p, causing it to be committed. Moreover,
r̃i < (2 sin κ̂)l−1−i

√
2rp, |p − bi| ≤ ηrp, and |p − ai| ≤

ηrp, for i = 0, 1, . . . , l − 1, with η = 1 +
√

2

1−2 sin κ̂
.

Proof. Since bl−1 was the center of an empty circum-
circle, but encroached sp, then r̃l−1 ≤

√
2rp. Using the

lemma gives the desired bound on r̃i. By the lemma,
and since κ̂ < π/6, r̃i ≤ r̃l−1. Then

|p − bi| ≤ |p − bl−1| + |bl−1 − bi| ≤ rp +
r̃l−1

1 − 2 sin κ̂

≤
�
1 +

√
2

1 − 2 sin κ̂ 
 rp = ηrp.

The bound on |p − ai| follows, mutatis mutandis.



7. PROVING TERMINATION

We prove termination not by showing that output
mesh edges are well-graded, rather by showing that
the algorithm can create no mesh edge smaller than
dictated by the minimum local feature size of the in-
put. Towards this end we define

lfsmin = min {lfs (x) | x ∈ Ω} .

Theorem 7.1 (Radius Bounds). Suppose that the
input to the Adaptive Delaunay Refinement Algorithm
conforms to Assumption 4.2. Suppose that κ̂ ≤
arcsin 2−7/6. Then there is a constant, µ, depending on
θ∗ and κ̂ such that if p is the midpoint of a segment,
s, of radius r that is committed by the algorithm, then
lfsmin ≤ µr.

Proof. We consider why the segment was split. If
there was an input point or a point on a disjoint input
sequence that encroached s, then clearly lfs (p) ≤ r, so
it suffices to take µ ≥ 1.

Suppose a midpoint q on a nondisjoint input sequence
encroached s. Using this result inductively we know
that lfsmin ≤ µrq, where rq is the radius associated
with q. By Lemma 5.2, rq ≤ r, which suffices.

Suppose that s was not encroached by an input point
or midpoint, rather it was split when a circumcenter
“yielded” to the segment split. Consider a maximal
circumcenter sequence, {bi}l−1

i=0
ending in the circum-

center bl−1 which yielded to the split of s. By maxi-
mality, b0 is not a circumcenter. Consider its identity.

If b0 is an input point or a midpoint on an input feature
disjoint from the segment containing s, then lfs (p) ≤
|p − b0| ≤ ηr, by Corollary 6.4. Thus it suffices to take
η ≤ µ.

The only remaining possibility is that b0 is a midpoint
on an input feature nondisjoint from the one contain-
ing s. Let rb be the radius associated with b0. This
radius may be larger or smaller than r̃0 = |b0 − a0| .
We consider the possibilities:

• Suppose rb ≤ r̃0. Using this result inductively
we have lfsmin ≤ µrb. By Corollary 6.4, r̃0 ≤
(2 sin κ̂)l−1

√
2r. If b0 is a midpoint on the same

input segment as p or on a distinct input seg-
ment subtending an angle other than π, then by
Assumption 4.2, log2

r
rb

is an integer. But since

rb ≤
√

2r, it must be a nonnegative one, thus
r ≥ rb, so lfsmin ≤ µr. The only alternative is b0 is
a midpoint on a distinct input segment subtend-
ing angle π with the one containing p. Then either
rb ≤ r, in which case immediately lfsmin ≤ µr, or
r < rb, in which case by Lemma 6.2, l ≥ 4, so
rb ≤ (2 sin κ̂)3

√
2r. This yields a contradiction

when κ̂ ≤ arcsin 2−7/6, as assumed.

• Suppose rb > r̃0. This means that a0 encroached
the diametral circle of the subsegment associated
with b0, and thus, since b0 was committed after
a0, a0 is not a circumcenter.
If a0 is an input point or on an input segment
disjoint from the one containing b0, then lfsmin ≤
|a0 − b0| = r̃0, so it suffices to take µ ≥ 1.
The alternative is that a0 is a midpoint on an
input segment adjoining the one containing b0. By
the definition of the (Quality′) operation and
circumcenter sequences, it must be the case that
θ, the angle between the two input segments is as
least π/3. Using Lemma 5.2, we know that r̃0 =
|a0 − b0| ≥ ra, where ra is the radius associated
with a0.
If the input segment containing a0 is disjoint from
the one containing p, then using Corollary 6.4
again it suffices to take η ≤ µ.
Otherwise arguments as above show that r ≥ ra,
and using this result inductively suffices.

In all it suffices to take µ = η = 1 +
√

2

1−2 sin κ̂
.

The following corollary gives termination:

Corollary 7.2. Suppose the Adaptive Delaunay Re-
finement Algorithm considers committing point p. Let
q be the closest point that has already been committed.
Then lfsmin ≤ µ

2 sin θ∗

2

|p − q| .

Proof. Consider the identity of p.

• Suppose p is a midpoint, and let r be the associ-
ated radius. If r ≤ |p − q| , then the theorem gives
lfsmin ≤ µ |p − q| . If, however, r > |p − q| , then
q encroaches the subsegment of p, so it cannot be
a circumcenter (which would have yielded). If q is
an input point or on a disjoint input feature then
lfsmin ≤ |p − q| , which suffices. Otherwise q is a
midpoint on a nondisjoint input segment. Then,
using, Lemma 5.2, |p − q| ≥ 2rq sin θ∗

2
, where rq

is the radius associated with q. Using the theo-
rem on q, we have lfsmin ≤ µrq, which gives the
desired result.

• Suppose p is a circumcenter with associated ra-
dius r. Then r = |p − q| , since the triangle is
Delaunay. Then p can be considered the last
circumcenter in a circumcenter sequence, and by
Lemma 6.3 r > r̃0. Then using this corollary in-
ductively on the point b0, the first point of the
circumcenter sequence, gives the desired result.

Note that this proof entirely ignores the issue of grad-
ing. The skeptic might object that all the edges in the



final mesh could have size Θ (lfsmin). However, the al-
gorithm actually does exhibit good grading; the proof
is too involved for presentation in this forum [8].

The uniform grading constant does not diverge as κ̂
reaches its limit value of arcsin 2−7/6, but does di-
verge as κ̂ approaches π/6. Note that the limitation
κ̂ < arcsin 2−7/6 comes from the case of collinear sub-
segments connected by a circumcenter sequence; in
this situation Lemma 6.2 gives a lower bound on the
length of the circumcenter sequence. A greater lower
bound would relax the restriction on κ̂, but this is not
theoretically possible without changing the algorithm,
as shown by the counterexample of Figure 4.

This does illustrate, however, why the Adaptive De-
launay Refinement Algorithm might work with κ̂ as
large as 30◦ on a given input: constructing a coun-
terexample such as Figure 4 where collinear subseg-
ments are connected by a circumcenter sequence is dif-
ficult work. Moreover, such counterexamples require
a few committed points noncollinear with the subseg-
ments, points which have to be perfectly aligned to
make the counterexample work. Thus it seems unlikely
that one could construct a counterexample where set-
ting κ̂ = 30◦ could cause the algorithm to fall into an
infinite loop; such a counterexample would likely have
to exhibit a structure which is scaled and repeated
by repeated action of circumcenter sequences between
collinear subsegments.

8. OUTPUT QUALITY

Recall that the Adaptive Delaunay Refinement Algo-
rithm ignores angles smaller than the parameter κ̂. We
will show that small output angles are not too much
smaller than a nearby small input angle. The following
simple geometric claim gives the output quality guar-
antee; the idea is to use it with facts about midpoints,
the definition of (Quality′), and the Delaunay prop-
erty to get the bound on output angles. We omit the
proofs due to space constraints.

Lemma 8.1. Let x, s, q be three distinct noncollinear
points. Let p be a point on the open line segment from
x to s. Suppose that |p − s| ≤ |x − p| ≤ |x − q| . Let
θ = � pxq, and φ = � psq. Then

φ ≥ arctan

�
sin θ

2 − cos θ 
 .

Claim 8.2 (Edge-Apex Rule). Given a triangle ∆pqr
in the Delaunay Triangulation of a set of points, � ,
with L the line through p, q, then � prq ≥ � pr′q for
every r′ ∈ � that is on the same side of L as p, with
equality only holding in the case of degeneracy.

We can now state the output guarantee.

Lemma 8.3. Suppose the Adaptive Delaunay Refine-
ment Algorithm terminates for a given input. Let
∆pqr be a triangle in the output triangulation. Then
either

(a) The angle � prq > κ̂, or
(b) the points p and q are midpoints on adjoining in-

put segments which meet at angle θ < π/3 and

� prq ≥ arctan

�
sin θ

2 − cos θ 
 .

Consequently no angle in the output mesh is smaller

than min � κ̂, arctan � sin θ∗

2−cos θ∗ ��� .

Proof. Supposing that � prq ≤ κ̂, by the definition of
the Adaptive Delaunay Refinement Algorithm, it must
be that p, q are midpoints on an adjoining input seg-
ment, meeting at an angle, θ, less than π/3. Let x
be the input point common to these segments. With-
out loss of generality, assume that |x − p| ≤ |x − q| .
The midpoint p is the endpoint of two subsegments
of this input segment; let the one farther from x
be (p, s). By Claim ??, |p − s| ≤ |p − x| . Then by

Lemma 8.1, � psq ≥ arctan � sin θ
2−cos θ � . Letting L be

the line through p, q, consider the location of r:

• Suppose r is on the same side of L as x. By

Claim 8.2, � prq ≥ � pxq = θ > arctan � sin θ
2−cos θ � .

• If r is on the same side of L as s, by Claim 8.2,

� prq ≥ � psq ≥ arctan � sin θ
2−cos θ � .

We note briefly that arctan [(sin θ)/(2 − cos θ)] = θ +
O � θ2 � , which makes this lower bound much bet-

ter than that of arcsin � sin � θ
2

� /
√

2 � = θ

2
√

2
+ O � θ2 �

achieved by Shewchuk’s Terminator [3].

The following corollary gives an upper bound on out-
put angles that depends on the output angle parame-
ter, κ̂, but not on the minimum output angle. Given
κ̂ = arcsin 2−7/6 ≈ 26.45◦, it guarantees no output an-

gle is bigger than about π − 2 arcsin
√

3−1

2
≈ 137.1◦.

The (omitted) proof relies on the location of small out-
put angles and uses the fact that diametral circles of
subsegments are not encroached in the final mesh.

Corollary 8.4. If ∆pqr is a triangle in the output
triangulation produced by the Adaptive Delaunay Re-
finement Algorithm, then

� pqr ≤ max � π − 2κ̂, π − 2 arcsin

√
3 − 1

2 � .



9. ADAPTIVE MIDPOINT SPLITTING

Our analysis so far has required that input meet As-
sumption 4.2. This assumption can be satisfied by
first adding no more than 2 | � | augmenting points, ef-
fectively redefining the input. While this can be done
while only suffering a constant increase in the cardinal-
ity of the final point set, this increase may be unaccept-
ably large [8]. Ruppert’s original heuristic for dealing
with midpoint-midpoint interactions can remove the
additional restriction on input while still giving good
point set sizes in practice.

Ruppert’s strategy of splitting on concentric circular
shells [1] proceeds as follows: The first time an input
segment is split, it is split by a point at its midpoint,
creating two subsegments each with one input point
associated. When one of these subsegments is split,
it is split by a point p closest to the midpoint of the
subsegment such that |p − x| is a power of two (in
some global unit), where x is the input point asso-
ciated with the subsegment. All further subsegment
splits are committed at midpoints.

We will refer to these first three points on any seg-
ment as “off-center” points, even though they could
be at the midpoint of the involved subsegment. It is
simple to show that lfsmin is no greater than three
times the length of the shortest subsegment created
by an off-center split under this strategy. This follows
since lfsmin is no greater than half the length of any
input segment, and the fact that the off-center split
must occur in the middle third of the subsegment.

Then Theorem 7.1 can be reproven for the Adaptive
Delaunay Refinement Algorithm with concentric shell
splitting for arbitrary input satisfying Assumption 2.1.
The basic strategy is that if any of the midpoints in-
volved in the proof are actually off-center points, they
can be shown to be not far away by Corollary 6.4, and
then the Lipschitz property of local feature size suf-
fices; in the end game none of the involved midpoints
are off-center, and the input locally conforms to As-
sumption 4.2, so the previous arguments may be used.

For the analysis to be valid, it is necessary that the al-
gorithm treat off-center points as input points, not as
midpoints. This makes a difference because the adap-
tive variant of the Delaunay Refinement Algorithm
regards triangles differently if the shortest edge has
midpoints as endpoints.

In light of the discussion in Subsection 3.1, we can
make the following

Claim 9.1. Suppose an input conforming to As-
sumption 2.1 if given to Ruppert’s Algorithm with
concentric shell splitting. Then if κ < 26.45◦ ∨
arctan [(sin θ∗)/(2 − cos θ∗)] , the algorithm will termi-
nate with no output angle smaller than κ.

10. RESULTS

Figure 5: The Baltic Sea input data. The input consists
of 1401 points and 1301 line segments. There are a
number of small angles and small segments present. The
minimum angle, θ∗ is approximately 0.052◦.

The Adaptive Delaunay Refinement Algorithm with
splitting on concentric shells was implemented. The
code was tested on the Baltic Sea, as shown in Fig-
ure 5, with κ̂ ≈ arcsin 2−7/6. The input has a number
of small angles, the smallest being around 0.052◦.

The output is shown in Figure 7, and is a mesh on
21704 vertices. The minimum and maximum angle
histograms are shown in Figure 6. The minimum angle
histogram shows that a small number of triangles have
minimum angle less than 26.45◦; these are all small
input angles or “across” from small input angles, in
accordance with Lemma 8.3.
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Figure 7: The output mesh of the Baltic Sea input (Figure 5) with κ̂ ≈ arcsin 2−7/6 is shown.


