BSP-ASSISTED CONSTRAINED TETRAHEDRALIZATION

Bhautik Joshi ! 2 Sébastien Ourselin !

! BioMedIA Lab, CSIRO ICT Centre, Sydney, Australia.
2University of New South Wales, Sydney, Australia.
Bhautik.Joshi@csiro.au, Sebastien.Ourselin@csiro.au

ABSTRACT

In this paper we tackle the problem of tetrahedralization by breaking non-convex polyhedra into convex subpolyhedra,
tetrahedralizing these convex subpolyhedra and merging them together. We generate a Binary Space Partition (BSP)
tree from the triangular faces of a polyhedron and use this to identify the convex subpolyhedra in the polyhedron. Each
convex subpolyhedron is tetrahedralized individually. Using an original merging process, the boundaries between these
subpolyhedra are joined and tetrahedralized, ensuring that no tetrahedra are created outside of the original polyhedron in

this merging process.

Keywords: computational geometry, mesh generation, tetrahedralization, BSP, Delaunay

1. INTRODUCTION

Closed polyhedra in 3D can be described using one
or more non-self-intersecting, closed boundaries. The
boundaries themselves are often constructed using tri-
angular faces. These polyhedra have an interior and an
exterior, and have a finite volume. Tetrahedralization of
them involves finding a set of tetrahedra that completely
fill the polyhedron and that lie exactly on or inside of its
boundaries.

Generally, this tetrahedralization can be performed using
a Delaunay tetrahedralization algorithm. Given a set of
vertices in a polyhedron, the Delaunay tetrahedralization
algorithm creates a convex set of tetrahedra with these
vertices. None of the tetrahedra intersect each other, and
the minimum angle (between edges or faces) in the mesh
is maximised.

However, a Delaunay triangulation or tetrahedralization
algorithm generates only convex meshes. This means
that it can fail to recover the boundary of the polyhedron
due to local non-convex regions, such as dents and holes,
which tend to get meshed over and sealed. A generic ap-
proach to this problem involves first generating a Delau-
nay tetrahedralization of the entire domain and removing
tetrahedra that lie outside it [1]. However, this does not
guarantee that all the boundary faces can be recovered.

To partially solve this, tetrahedralization of a non-convex
polyhedron typically involves the placement of extra
points on and inside it. These extra points, commonly
called Steiner points, enable the algorithm to completely
cover the domain at the added cost of extra complexity
in the generated mesh. In 2D, several reliable methods
for preserving the boundary with minimal point insertion
have been proposed [1]. However, in 3D, an algorithm
that can create a tetrahedralization preserving bound-
aries and with an acceptable degree of extra complexity
is still a current and challenging problem.

Over the past ten years, two dominant approaches to
preserve boundaries in 3D meshing have emerged: con-
forming and constrained tetrahedralizations. In the fol-
lowing, we describe two major techniques then briefly
review some of the other methods available in the litera-
ture 1.

Conforming Delaunay tetrahedralization is a strict De-
launay tetrahedralization of the input polyhedron. If nec-
essary, Steiner points are inserted into the mesh to ensure
that all boundaries of the input mesh are preserved, while
complying strictly with the Delaunay empty sphere crite-
ria. In 2D, a clear upper bound on the number of added

!We recommend to the reader an exhaustive survey of
tetrahedralization methods by Bern et al. [2].

Steiner points to perform a conforming triangulation has
been established as O(n?) for n input verticies [3]. How-
ever, conforming tetrahedralization can come at a higher
cost in terms of number of Steiner points inserted.

Figure 1: In this constrained Delaunay triangulation, the
boundary edges are indicated by the darkened lines. To
preserve boundary edges, the highlighted triangle with its
circumcircle (dashed lines) is not Delaunay.

Constrained Delaunay tetrahedralizations are not strictly
Delaunay. To assist boundary recovery, the empty circle
theorem is relaxed to allow for elements that are locally
Delaunay [4]. Elements that lie on a boundary edge
or face are allowed to be created even if they violate
the empty circle theorem (see Figure 1). Constrained
tetrahedralizations have fewer restrictions on the input
meshes. Although they are not a strict Delaunay tetra-
hedralization, they still help to generate good quality
meshes and require insertion of fewer points than con-
forming algorithms [5, 6, 7].

An extension of constrained Delaunay tetrahedralizations
has been proposed by Shewchuk, that is able to tetrahe-
dralize non-convex polyhedra by using a Delaunay refine-
ment approach [8]. However, it is restricted to working
with meshes whose faces form angles of greater than 90
degrees with each other.

The first group to create an algorithm that was able to
perform a conforming Delaunay tetrahedralization with-
out any restrictions on the input mesh were Murphy et
al. [9]. The method described extended a 2D conforming
triangulation method to 3D [10]. They stated that the
number of Steiner points it added to the mesh was too
large to be practical. The paper proved that there does
exist an upper bound on the number of Steiner points
needed to tetrahedralize a polyhedron, but the value of
this bound is yet to be determined [9, 11].

By adapting the algorithm to the local features of the ge-
ometry being tetrahedralized, Cohen-Steiner et al. were
able to reduce the number of Steiner points added for a
3D conforming Delaunay triangulation [11]. The algo-
rithm makes use of the Delaunay refinement approach,
which adds Steiner points to the mesh until the original
boundaries have been recovered. In practice, the ratio
of number of added vertices to input vertices varied be-
tween 3 to 1 and 10 to 1. However the technique did not

Triangular Surface Mesh

/
Generate BSP Tree

Y

Convex decomposition

{

Tetrahedralize Subpolygons

'

Glue Subpolygons

{

Fix Crossed Tetrahedra

Y
Tetrahedralized Object

Figure 2: The overall BSP-assisted constrained tetrahedral-
ization algorithm.

state any bounds on this ratio.

Another approach performs tetrahedralization by using
the existing Delaunay triangles in a boundary [12]. It
made use of the triangles to accelerate a Delaunay tetra-
hedralization algorithm; however, it did not indicate if it
was able to cope with non-convex polyhedra.

By partitioning a polyhedron into subpolyhedra, the
problem of tetrahedralization is simplified as it allows
for individually tetrahedralizing each subpolyhedron and
merging the results together. It has been shown that the
task of partitioning a polyhedron into the minimum num-
ber of convex subpolyhedra without Steiner points is NP-
complete. However, good algorithms for polygon pari-
tioning exist [13], with many more that allow for Steiner
point insertion [14].

A common approach for polyhedral decomposition is to
use an pre-defined grid, often made up of orthogonal
planes to divide the polyhedron into finite sized cells.
However, these techniques can be limited by the local ge-
ometry of the polyhedron [15], especially when complex
features are smaller than the size of the cell size.

To tackle this problem and take advantage of the simplic-
ity of grid-based mesh generation, we propose using a Bi-
nary Space Partition (BSP) tree to decompose an input
mesh into convex regions. Each of these regions are indi-
vidually tetrahedralized and then merged together with
additional tetrahedra to reconstruct the original polyhe-
dron. This technique deals effectively with non-convex
polyhedra, and unlike other grid-based techniques, is not

4
1»@
i

5f 5b

(a)

0N 1\ (2,behind)"(3,front)(4,front)(5b,front)

(2,behind) (2, front)

(b)

Figure 3: Creation of a BSP tree and convex subpolyhedron identification for a simple polygon. The polygon is shown in (a)

and the corresponding BSP tree is shown in (b).

limited by grid resolution because the grid conforms to
the faces of the original polyhedron itself.

The proposed algorithm serves as an initialisation for
quality mesh generation. Once it creates an efficient cov-
ering tetrahedralization of the polyhedron, the generated
tetrahedra can be easily subdivided without the need for
edge flips, providing a guarantee that the input boundary
topology is preserved.

The algorithm described can triangulate non-convex
polyhedra in 2D as well; however, this paper is focused
on its 3D applications. Our proposed algorithm is de-
scribed in detail in Section 2, with preliminary results
using non-convex polygons presented in Section 3. In
Section 4, we discuss advantages and limitations of the
current technique, and finally propose several paths for
future research.

2. METHODOLOGY

Given an input polygon in 2D or 3D, a BSP tree of it can
be created. Using this tree, convex subpolyhedra within
the polyhedron are established [16]. Sets of points in each
of these convex subpolyhedra are identified and tetrahe-
dralized using an incremental Delaunay algorithm. Us-
ing the BSP tree, these convex sites are glued together
using an adaptation of the same incremental Delaunay
algorithm. The BSP tree can be traversed recursively to
efficiently perform this gluing process with only two sub-
polyhedra at a time. An additional step to correct tetra-
hedra that are not coincident with each other is necessary
to complete the tetrahedralization.

A flowchart of the BSP assisted tetrahedralization algo-
rithm is shown in Figure 2. For clarity, convex decom-
position and tetrahedralization of convex subpolyhedra
are shown to be grouped as a single step, and the gluing
and fixing of the subpolyhedra as another. In practice,
all four operations can be performed as part of a single
recursive algorithm.

2.1 Generating BSP Trees

BSP trees can be regarded as the most general spatial
subdivision technique, easily adapted for 2D, 3D and
higher dimensions. BSP trees came to the fore in com-
putational geometry and computer graphics as a solution
for the painters algorithm [17]. We will not go into the
details of BSP tree creation here, and recommend a good
introduction to BSP trees from Bruce Naylor [18].

Using BSP trees to find convex subpolyhedra of poly-
hedra is a well known property of BSP trees [18, 16].
However, because BSP trees split faces and insert points,
it is not a strict convex decomposition of the polygon.
Ruppert and Sidel have shown that the problem of deter-
mining if a given polygon can be tetrahedralized without
Steiner points is NP-complete [19]. Other spatial sub-
division techniques such as kD-trees or octrees are not
used because in polyhedra with boundaries that have
high curvature, a high degree of subdivision of the ini-
tial grid may be necessary, producing a large number of
added points [20]. In addition, as mentioned in the in-
troduction, unlike other spatial subdivision techniques,
this decomposition is not limited by grid resolution be-
cause the grid is conforming to the faces of the original
polyhedron itself.

2.2 BSP Trees for Convex Decomposition

The polygonal face at the root of a BSP tree divides space
into two subpolyhedra. As one traverses the BSP tree
in the front or behind subpolyhedra, these subpolyhedra
are divided again by the faces of the leaf nodes. These
leaf nodes may serve as roots of sub-trees which further
divide the subpolyhedra, which may go on to have leaves
that split these subpolyhedra and so on. In fact, convex
subpolyhedra in the polyhedron are the intersection of
groups of these subpolyhedra, and a structured traversal
of the BSP tree can be used to identify them.

To clarify the process of convex decomposition using BSP
trees, we present in Figure 3 a 2D example. The polygon
in Figure 3a has five faces. Each face has an orientation;

the side with the arrow represents front and without
represents behind. These faces are added one at a time
into a BSP tree, shown in Figure 3b. In the tree, relative
to a face, the right leaf is the front halfspace and the left
leaf is the behind halfspace. If the plane that a face lies
in intersects a leaf, then the leaf face is split. Hence face
2 splits face b into 5f and 5b. As the tree is traversed,
a list of tuples representing the face traversed and the
direction taken relative to the root face is kept. If a front
face is encountered that is empty, then the list is stored
as a convex subpolyhedron. The convex subpolyhedron
A is represented by the intersection of the halfspaces in
front of 2, 1 and 5f. B is represented by the intersection
of the halfspaces in front of 3, 4, 5b and behind 2.

2.2.1 Creation of BSP points

Not all of the implicit vertices of the subpolyhedra identi-
fied by the BSP tree convex decomposition algorithm are
guaranteed to have a corresponding vertex in the origi-
nal polyhedron. However, during the BSP tree creation
process, faces that lie across the plane of a parent node
are split. This splitting process introduces new points on
to the boundary of the polyhedron being tetrahedralized.
These BSP points help ensure that a complete tetrahe-
dralization is performed. However, it is still unclear if
there is a relationship between BSP points and Steiner
points.

2.3 Tetrahedralization of subpolyhedra

Once a convex subpolyhedron has been identified, a list
of points inside? it can be determined. These points
can be tetrahedralized, forming a mesh of the convex
subpolyhedron. A randomized point insertion Delaunay
tetrahedralization algorithm is used. However, it is not
guaranteed that this set of points completely describe the
boundary of the convex subpolyhedron. This commonly
occurs when a node of a BSP tree intersects the plane of
a child node but does not intersect the child node itself.

A 2D example of subpolyhedra that are not completely
described is shown in Figure 4. The polygon in Figure 4a
and one possible corresponding BSP tree, Figure 4b, can
be split into two convex subpolyhedra, A and B. Al-
though the plane that the child node 3 lies in intersects
the parent node, 1, the face itself does not intersect the
parent node. This means that for the convex subpoly-
hedra, there is no vertex at the intersection of bounding
planes 1 and 3, and hence the subpolyhedra do not have
a vertex at every corner of the subpolyhedra. Figure 4c
illustrates how a triangulation of the subpolyhedra will
not recover the whole polygon.

Uncorrected, this problem will lead to missing tetrahe-
dra in the tetrahedralization. To recover these missing

2In this paper, a point lying exactly on the boundary of a
subpolyhedron is classified as inside the subpolyhedron

(b)

©

Figure 4: (a) shows a problem polygon where the convex
subpolyhedra are not completely described by points. The
corresponding BSP tree is shown in (b). The polygon with
its subpolyhedra triangulated is shown in (c).

tetrahedra, a glue algorithm has been devised to merge
subpolyhedra together.

2.3.1 Pseudocode Implementation

The tetrahedralization algorithm operates by travers-
ing the BSP tree. A list of tuples representing the
node traversed and the direction taken - for example,
(noden,[front,behind]) - is necessary to identify the con-
vex subpolyhedra. Once a node has been visited, it is
removed from the list. This psuedocode implementation
is described in Algorithm 1.

2.4 Gluing subpolyhedra

When two subpolyhedra are merged using the glue al-
gorithm, they are separated exactly by a single splitting
plane, which is the root node of the current position in
the BSP tree. As such, the algorithm recursively merges
two growing subpolyhedra at a time until all subpoly-
hedra in the tree have been merged. Tetrahedra need
to be generated that fill the space in-between the merg-
ing subpolyhedra. This is not a new problem; Bern and
Marshall have demonstrated that it is possible to tetrahe-
dralize the region between two convex polyhedra without
the addition of Steiner points [21].

One way to generate the tetrahedra in-between the sub-
polyhedra is to merge the points in both the front and
behind subsets and perform a Delaunay tetrahedraliza-
tion on this merged set of points. A simple cross test
then can be used to reject tetrahedra that do not merge
the tetrahedralization. This merging set of tetrahedra is

Algorithm 1 Traverse and tetrahedralize convex subpolyhedra within a BSP tree

1: bsp-_tetrahedralize(bsp_tree, traversal list)

2: frontNode = bsp_treesront

3: behindNode = bsp_treepenind

4: if frontNode = empty then

5: points = getConvexPoints(bsp_tree, traversal_list)
6: return Delaunay(points)

7: end if

8: push (frontNode, front) on traversallist

9

: front_tetrahedralization=Dbsp_tetrahedralize(front Node, traversallist)

10: pop traversal_list
11: push (behindNode, front) on traversal list

12: behind_tetrahedralization=bsp_tetrahedralize(behindNode, traversal list)

13: pop traversal_list

14: return glue(front_tetrahedralization, behind_tetrahedralization)

above d

below

Figure 5: Merging two convex subpolyhedra.

then added to the set of already generated tetrahedra for
the front and behind subpolyhedra.

For a tetrahedra to pass the cross test, it must satisfy
three criteria. Firstly, all its vertices must not lie com-
pletely on and above or on and below of the joining plane.
Secondly, at least one edge of the tetrahedra must cross
the joining plane. Lastly, none of the edges of the tetra-
hedra may intersect an existing face on the joining plane.

A 2D example is described in Figure 5. In this merge,
the joining plane is represented by the dashed line and is
generated from the edge cf. Using the cross test, triangle
Acde is legal, as its vertices lie both above and below
the joining plane, an edge crosses the joining plane and
none of the edges intersect cf. Aafb is illegal because
all its points above the joining plane, and Aabyg is illegal
because it has edges that cross edges on the joining plane

cf.

Unfortunately, the above algorithm does not work for all

©
Figure 6: Randomized Point Insertion: adding a point out-
side the triangulation when the point is inside the circumcir-
cles of one or more existing triangles is shown in (a). (b) and
(c) demonstrate two alternative solutions for triangulation.

cases, sometimes failing to completely mesh the region
in-between the subpolyhedra. To solve this problem we
propose a glue algorithm inspired by the Bowyer-Watson
randomised point insertion (RPI) algorithm [22, 23]. It
works by joining triangles from the boundary (or hull)
of the front subset, front hull, to the points of the hull
below that face those triangles, below hull points.

Tetrahedralization of the front and behind subpolyhedra
are performed independently of each other. Because of
this, there is no guarantee that a point in one set would
not violate the Delaunay empty sphere criteria of a tetra-
hedra in the other set. Hence the region in-between the
two sets would not be guaranteed to be tetrahedralized
with Delaunay tetrahedra. Therefore a non-Delaunay
tetrahedralization algorithm is necessary. A version of
the traditional RPI algorithm has been modified so that
it performs the gluing tetrahedralization without check-

Figure 7: Here two triangulated subpolyhedra are to be merged along a merging plane (the dashed horizontal line).

ing the Delaunay in-sphere criteria.

In RPI, a point may be added to a tetrahedralization that
lies outside the tetrahedra but infringes upon the circum-
circles of some tetrahedra. Conventionally, the tetrahe-
dra that are infringed are deleted and re-meshed and the
remaining edges for which the point is behind make new
tetrahedra. With the new point insertion algorithm, in-
fringed tetrahedra are not deleted.

A 2D example of this type of point insertion is shown
in Figure 6. Triangles whose circumcircles contain the
point are deleted and re-meshed with the new point (Fig-
ure 6a). Once this is completed, the edges of the hull are
used to create new triangles (same as if the point was
lying completely outside the triangulation and circum-
circles)(Figure 6b). With the glue algorithm, as shown
in Figure 6c, no tetrahedra are deleted and triangles are
created from edges on the hull and the exterior point.
The glue algorithm operates in a similar fashion, but the
tetrahedra that are infringed are not deleted and tetra-
hedra are created from any faces for which the point lies
behind.

The below hull points are added individually to the front
hull using this technique. An example is shown in Fig-
ure 7. The halfspace above the line is indicated simply
as above, below as below. The boundary edges in above
are identified and the points on the boundary of below
are also identified, as described in Figure 7a. For each
of the boundary edges in above, a test triangle for each
boundary point in below.

For the triangle to be allowed, it must not intersect any
edges on the joining plane or intersect any of the bound-
ary edges in below. So, Aabc is allowed, but Aabd is
not because one or more of its edges intersect the below
boundary. Once a legal triangle is created, it is added to
the above set and further edges may attempt to create
triangles with the added point as in Figure 7b. When
all the points are added to the above subpolyhedron, the
region between above and below is triangulated as delin-
eated as the darkened area in Figure 7c.

2.5 Fixing Crossed Tetrahedra Edges

While the glue algorithm completely fills the space be-
tween the above and below subpolyhedra, it is not guar-
anteed that the gluing process creates tetrahedra that
have edges that are all coincident to each other, leading
to edges that may intersect. These intersections can pos-
sibly occur on any of the planes defined by the faces of
the below hull.

—>

Figure 8: The addition of a point to the edge of a tetrahe-
dron on the left leads to the creation of two new tetrahedra,
shown separated, on the right.

This can usually be corrected by inserting a point at the
site of an intersection and splitting the tetrahedra for
which this added point lies on. Each point added to the
edge of a tetrahedron leads to the creation of two new
tetrahedra, as described in Figure 8.

A whole face of a tetrahedron may lie on a plane for which
there are edges that are crossed. A case can occur where
adding the intersected point generates an edge which in
turn generates a new intersection, leading to an infinite
loop of new intersection points being generated. This
can be avoided by checking to see if the intersected point
generates an edge which generates more invalid crossed
edges. If this is the case, the intersected point is pushed
to the end of the list of intersected points to be added.
In this fashion, all the intersected points can be added.

Figure 9 describes an example of this process. Two tetra-
hedra have triangular faces that lie on a common plane.
Their vertices and edges are not coincident and they lie
across each other as shown in Figure 9a, creating four in-

(b)

<]
>

(© (d)

Figure 9: Fixing crossed edges.

tersection points - p,q,r,s. These intersection points are
pushed onto a list. p is the first point to be added to the
tetrahedra, and does not create any new intersections, as
shown in Figure 9b. However, when ¢ is popped off the
top of the list it creates edges that create new intersec-
tion points, as shown in Figure 9c. ¢ is placed at the
bottom of the list to be handled later. The same applies
to r. s is now popped off the top list, and its addition
does not create any new intersecting edges, as shown in
Figure 9d. ¢ and r are (respectively) popped of the list
now, and can safely split the tetrahedra without creating
any new intersected edges.

3. PROOF OF CONCEPT

To test the BSP assisted tetrahedralization algorithm,
four non-convex 3D polyhedra were constructed. The
first is a cube which had one corner indented, the sec-
ond is the well known Schénhardts polyhedron, the third
is a cube with a hole through it on one axis and lastly
a rectangular prism with opposing angular cuts on two
opposite faces, making a dented polygon.

These polyhedra are closed surface meshes constructed
from triangular faces. Our BSP assisted tetrahedraliza-
tion algorithm has been applied to this set. During this
process, we recorded several pertinent variables, such as
the initial number of points in the polyhedra, the num-
ber of points added, and the final number of tetrahedra.
We summarise these results in Table 1. In Table 2, we
present the different polyhedra at each step of the tetra-
hedralization process.

4. DISCUSSION

4.1 Theoretical Bounds

Current algorithms for tetrahedralizations produce a
large number of Steiner points that need to be added.
In the two dimensional case, a lower bound of @(n?®) has
been found [3]. However, a lower bound for the num-
ber of inserted Steiner points in 3D has yet to be firmly
established [11]. One could reasonably expect that 3D

techniques that extend 2D would only increase the lower
bound (i.e. greater than O(n?)).

Given a 3D polyhedra made of f triangular faces and n
vertices, in the worst case, a naive BSP tree generation
algorithm will produce a tree made from O(f%) faces.
In practice, however, empirical results have shown that
BSP trees of 3D polyhedra tend to produce trees with
close to O(flog(f)) faces [18]. Paterson and Yao demon-
strated that it is possible to construct 3D BSP trees with
a provable upper bound of O(f?) and lower bound of
O(f%?) [24]. Tt is expected that a BSP would produce
BSP polygons with a number of vertices in the order of
O(nlog(n)).

4.2 BSP and Steiner Points

During the process of creating a BSP tree from the faces
of an input mesh, many of the faces are split. Each time
a split occurs, two new points are introduced into the
mesh. Rather than discard these BSP points, they are
retained as part of a new mesh with no split faces as
defined by the BSP tree. In practice, these points appear
to fulfil the role of Steiner points, helping to ensure that
convex regions can be tetrahedralized. However, a proof
that links BSP points and Steiner points is yet to be
established.

4.3 Practical Considerations

It is possible to construct many different BSP trees from
the same input mesh. To help make the BSP trees gen-
erated more consistent, it was decided that a selection
criteria for choosing root nodes in BSP tree construc-
tion was necessary. The metric used was the number of
leaf nodes split if a particular root node was chosen. In
practice, meshes tended to have fewer added points and
tetrahedra when the choice of BSP root node was one
that minimised the number of split leaf nodes.

The mesh generator does not guarantee the quality of any
of the tetrahedra generated. However, the mesh genera-
tion process is not limited by the size of local geometrical
features and as such is scale independent.

Numerical Results

Variable Dented box | Schénhardts polygon | Box with hole | Dented polygon
Initial Number of Points in Polygon 8 6 16 26
Total Number of Points Added 0 6 1 7
Number of Tetrahedra 9 18 29 70

Table 1: Numerical results on non-convex polyhedra.

Graphical Results Table

Type

Dented box

| Schénhardts polygon |

Box with hole |

Dented polygon

Original

Before gluing

After gluing

_—A

Wireframe

Table 2: Graphical results table for non-convex polyhedra.

Because convex subpoloygons are tetrahedralized indi-
vidually, and only the hulls of these subpolyhedra are
necessary for the bulk of the computation, completed
subpolyhedra are swapped out-of-core into a cache on
disk. In this way, it may be possible to tetrahedralize
very large meshes by swapping out completed portions
of the mesh.

As with many tetrahedralization algorithms, practical
implementation is plagued by problems with computa-
tional precision.

4.4 Limitations

The weakest part of the algorithm is in the gluing pro-
cess, and the author believes that it will require more
development. The main problem lies in the fact that the
set of generated tetrahedra between the subpolyhedra is
non-Delaunay, and reliable properties and attributes of
these tetrahedra have yet to be determined.

Related to this is the problem of finding the set of faces
in the above subpolyhedron that face the below subpoly-
hedron in the gluing process. At the moment, there is
no sure way to prevent faces from the other side of the
subpolyhedron that are simply just facing in the right
direction to be treated as candidates for gluing to the
bottom subpolyhedron.

5. CONCLUSION AND FUTURE
DIRECTIONS

In this paper, we have presented a covering tetrahedral-
ization algorithm providing an efficient initialisation for
a quality mesh generator. As such, these tetrahedra can
be subdivided and refined without any edge flips which
guarantees to preserve the topology of the polyhedron
input boundary.

The main innovation of this is bringing together BSP
trees and Delaunay Tetrahedralization, along with a
tetrahedral mesh generator that is not limited by the
local complexity of the geometry.

Based on our experiments, the number of added points
has been quite low. Future testing on more complex
meshes will yield more conclusive information about the
properties of this algorithm and how it may perform in
practice.

The number of points added by a BSP decomposition of
a polygon has already been quite well established. If a
link between BSP points and Steiner points can be found,
is may be possible that bounds on the number of extra
points necessary to tetrahedralize any polyhedron can be
found.

So far, the meshes generated are Constrained Delaunay
Tetrahedralizations, and no consideration is given to the
quality of the meshes generated. Preliminary work has

shown that it is, in theory, possible to convert the con-
strained tetrahedralizations to conforming ones via point
insertion and Delaunay refinement. This is work cur-
rently in progress.

The algorithms in this paper were implemented in C++
and made use VTK for rendering output [25]. The com-
putational geometry functions implemented and the BSP
assisted tetrahedralization algorithm will be made avail-
able online.

6. ACKNOWLEDGEMENTS

The authors would like to thank R. Li and N. Killeen for
proofreading of this article, and J. Ables and B. Doyle
for their support.

References

[1] Frey P.J., George P.L. Mesh Generation Application
to Finite Elements. Hermes Science Publishing, 2000

[2] Bern M., Eppstein D. “Mesh generation and optimal
triangulation.” D.Z. Du, F.K.M. Hwang, editors,
Computing in Euclidean Geometry, no. 4 in Lecture
Notes Series on Computing, pp. 47-123. World Sci-
entific, second edn., 1995

[3] Edelsbrunner H., Tan T.S. “An Upper Bound for
Conforming Delaunay Triangulations.” Proc. 8th
Symposium on computational geometry, Universitat
Politécnica de Catalunya, Barcelona, Spain, pp. 53—
62. ACM Press, Jun. 1992

[4] Chew L.P. “Constrained Delaunay Triangulations.”
Algorithmica, vol. 4, 97-108, 1989

[6] Shewchuk J.R. “Mesh generation for domains with
small angles.” Proceedings of the sizteenth annual
symposium on computational geometry, Hong Kong,
China, pp. 1-10. ACM Press, 2000

[6] Shewchuk J.R. “Constrained Delaunay Tetrahe-
dralizations and Provably Good Boundary Recov-
ery.” Proceedings of the 11th International Meshing
Roundtable, Ithaca, New York, USA, pp. 193-204.
ACM Press, 2002

[7] Shewchuk J.R. “What is a Good Linear Ele-
ment? Interpolation, Conditioning, and Quality
Measures.” Proceedings of the 11th International
Meshing Roundtable, Ithaca, New York, USA, pp.
115-126. ACM Press, 2002

[8] Shewchuk J.R. “Tetrahedral Mesh Generation by
Delaunay Refinement.” Fourteenth Annual Sympo-
stum on computational geometry, Minneapolis, MN,
USA, pp. 86-95. ACM Press, 1998

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

(20]

(21]

Murphy M., Mount D.M., Gable C.W. “A Point-
Placement Strategy for Conforming Delaunay Tetra-
hedralization.” International Journal of Computa-
tional Geometry and Applications, vol. 11, no. 6,
669-682, 2001

Chew L.P. “Guaranteed-Quality Triangular
Meshes.” Tech. Rep. 89-983, Department of Com-
puter Science, Cornell University, 1989

Cohen-Steiner D., de Verdiere E.C., Yvinec M.
“Conforming Delaunay Triangulations in 3D.” Proc.
of the FEighteenth Annual Symposium on Compu-
tational Geometry, Barcelona, Spain, pp. 199-208.
ACM Press, 2002

Choi S. “The Delaunay tetrahedralization from De-
launay triangulated surfaces.” Proc. of the Eigh-
teenth Annual Symposium on Computational Geom-
etry, Barcelona, Spain, pp. 145-150. ACM Press,
2002

Chazelle B., Palios L. “Triangulating a non-convex
polytype.” Proceedings of the fifth annual sym-
posium on Computational geometry, pp. 393—-400.
ACM Press, 1989

Keil J.M. Handbook of Computational Geometry,
chap. 11, pp. 491-518. Elsevier, 2000

Owen S.J. “A Survey of Unstructured Mesh Gen-
eration Technology.” Proceedings, 7th International
Meshing Roundtable, Sandia National Lab., USA,
pp. 239-267. Oct. 1998

Baldazzi C., Paoluzzi A. “From Polyline to Polygon
via XOR tree.” Tech. Rep. INF-04-96, Dip. Disc.
Scient., Universita Roma Tre, Rome, Italy, 1996

Fuchs H., Kedem Z.M., Naylor B.F. “On visible
surface generation by a priori tree structures.” Pro-
ceedings of the Tth Annual Conference on Computer
Graphics and Interactive Techniques, Seattle, Wash-
ington, USA, pp. 124-133. ACM Press, 1980

Naylor B. “Constructing Good Partitioning Trees.”
Graphics Interface °93, Toronto Canada, pp. 181-
191. May 1993

Ruppert J., Seidel R. “On the difficulty of tetra-
hedralizing 3-dimensional non-convex polyhedra.”
Proceedings of the fifth annual symposium on Com-
putational geometry, pp. 380-392. ACM Press, 1989

Mitchell S.A., Vavasis S.A. “Quality Mesh Gener-
ation in Three Dimensions.” Proc. 8th Symposium
on computational geometry, Universitat Politécnica
de Catalunya, Barcelona, Spain, pp. 212-221. ACM
Press, 1992

Bern M. “Compatible tetrahedralizations.” Proc.
9th Annual Symp. Computational Geometry, San
Diego, USA, pp. 281-288. ACM Press, 1993

(22]

23]

(24]

[25]

Bowyer A. “Computing Dirichlet tessellations.” The
Computer Journal, vol. 24, no. 2, 162-166, 1981

Watson D. “Computing the n-dimensional Delaunay
tessellation with application to Voronoi polytopes.”
The Computer Journal, vol. 24, no. 2, 167-172, 1981

Paterson M.S., Yao F.F. “Efficient Binary Space
Partitions for Hidden-Surface Removal and Solid
Modeling.” Discrete and Computational Geometry,
vol. 5, 485-503, 1990

Schroeder W., Martin K., Lorenson B. The Visuali-
sation Toolkit - An Object-Oriented Approach to 3D
Graphics. Prentice-Hall, 2nd edn., 1998

