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ABSTRACT 

This paper presents recent progress and extensions to TriQuaMesh (TQM) [1], targeted at providing good quality surface 
meshes: Increased robustness of the 1D mesh generator to handle highly non linear size variations; interior node generation 
driven by a size variation interpolation domain; improved mesh distortion reduction between the parameter space and the 
physical space.  The concepts of Size Control, Size Map and Triangle Map are introduced to increase the flexibility and the 
control on the final mesh. These concepts are general and apply to any meshing algorithm, although they will be illustrated with 
TQM.  
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1. INTRODUCTION 

The most common tetrahedral meshing algorithms, 
advancing front and Delaunay, require the surface mesh to 
be generated first, prior to filling in the interior with 
tetrahedral elements. For volume skin surfaces with 
geodesic distances between two points on the surface high 
compared to the Euclidian distance (i.e. narrow and high 
curvature passageway), adaptation of the surface mesh to 
the curvature might be critical to the success of an 
automatic volume mesher by preventing geometrical 
surface mesh intersection. The success and the quality of 
the volume mesher is then directly impacted by the success 
and quality of the surface mesher. 
 
Although tremendous progress has been made with regard 
to meshing algorithms in both two and three dimensions, it 
still remains a difficult task to surface mesh any collection 
of surfaces with good quality and size control. 
Many approaches are available depending on the surface 
definition available (continuous or discrete).  
For CAD parametric surfaces, a 2D parameter space 
representation of the surface is available and surface 
meshing is reduced to a 2D meshing problem. However, 
the surface can be poorly parameterized leading to high 
distortion when mapping the mesh back from 2D to 3D 
space. Some methods have been presented to account for 
the distortion between the 2D and 3D space using the CAD 
Riemannian surface evaluators [2].  
 
 Most CAD systems can export an STL or facetted 
representation of any parametric surface. This is a lower 
level definition of the surface that has the advantage of a 
simple and common format independent of the CAD 
system. 
 
For discrete data representations of the surface (STL data 
or legacy data), some techniques work directly on the 3D 
discrete data to obtain a good quality mesh [3] while others 
use a divide and conquer approach to select a region and 
derive a parameter space to reduce the surface meshing 

problem to 2D.  The two most common techniques used to 
derive a parameter space are:  projection techniques, for 
example Maximum Area Plane (MAP) in I-DEAS, and 
flattening techniques based on angles [4] or based on 
lengths [5].  
 
Adaptive meshing based on error estimation is another 
instance where controlling the mesh size variation to refine 
in areas of high error and coarsen in areas of low error is 
critical to obtain a good solution with reduced node and 
element count. 
 
In this paper a simple method to account for the distortion 
between the 2D and 3D space for a surface represented by 
STL data is presented. Adaptive meshing based on discrete 
surface curvature is also presented in order to increase the 
mesh fidelity to the original surface at an economical cost 
compared to a constant size mesh. 

1. TQM MESHING ALGORITHM IN A 
NUTSHELL. 

The TQM algorithm is a divide and conquer meshing 
algorithm. Boundary loops are discretised using a 1D mesh 
generator. They are then joined into one single contour loop 
resulting in a loop of nodes.  The contour loop is 
recursively subdivided into two sub contour loops along a 
“best split line” until the sub contour loop has been reduced 
to a trivial loop i.e. a loop with 3 points for a triangles or a 
loop with 4 points for quadrangles. All the details can be 
found in reference [1][6].  The remainder of this section 
recalls the two main points of interest for our discussion. 
• Generation of contour points:  Let’s assume that we 

have a curve Γ parametrised using the arc length with 
total arc length L. Let’s assume that we have a 
continuous grading function g(s) that represents the 
grading (or size) value along the parameter location. 
The 1D mesh generation problem can be stated as 1) 
how many points (nPoin) to generate? 2) Compute the 
parameter location for these points that will satisfy the 
grading function requirements. In [1] a solution was 



proposed assuming a) Grading function is known 
discretely at (nSample) sample or basis points b) the 
grading function is assumed to be piecewise harmonic 
(fig. 1a).  
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In equation (3) the number of sample points, their 
parameter locations and their grading values is known. 

is computed by rounding the result of equation (3) 
to the nearest integer. The parameter locations of the 1D 
mesh points (fig.1b) are obtained by solving the system:  
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derived from the equidistribution equation (2). More details 
on the solution of equation (4) are given in section 2.1. 

Once the boundary loops have been discretised, boundary 
nodes are assigned grading values.  The loops are joined 
into one single contour loop. A “best split line” criterion is 
used to join the loops and the 1D mesh generation 
technique is applied to determine how many points and 
their locations along the split line. The sample points are 
the two end points of the split line where the grading values 
are known. This process is applied recursively.      

s2 
Fig. 1a – grading piecewise harmonic interpolation  

 

Given nSample points, their respective parameter locations 
and grading values ( )jj gs , , the number of points is 

derived by requiring to meet “at best” the equidistribution 
for each interval: 
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Fig. 1b –Nodal point distribution  

 

Notice that in the equation above  and  are 

unknowns as well as . Summing equation (2) 
over all the intervals we obtain:  
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ig. 2 – Parameters for the best split line (P-Q) and polygon 
diameter 

 Best Split line: Given a point P, we find the set of 
admissible points Q that are visible from P. The best 
split line from P is the line [P,Q] that minimizes the 
objective function : 

(n)W)(W)(W(Q) nPoinLengthangleP δδαδ ++= l

),,,( 4321

he weight factors W are constants. The first term, is 

inimal when the angles αααα  (fig. 2) tend 
 multiples of 60 or 90 (respectively for triangles and 

uadrilaterals). The second term is minimal when the split 
ne length tends to the minimum diameter of the boundary 
op (i.e. the diameter of the smallest inscribed circle 

assing through two boundary points). The last term is 
inimal when the round off in equation (3) to obtain the 
teger is minimal. Other choices for the function 

re possible, see [6], [7].  
nPoin



2. TQM MESHING ALGORITHM 
SHORTCOMNGS 

In this section we try to highlight some of the limitations of 
the TQM approach as it is currently implemented in I-
DEAS. 

2.1 1D Boundary discretisation  

Given , their location is found by solving the non-
linear system of equations (4). One has to find the solution 

 that satisfies the system of non 

linear equations: 
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Using Newtown-Raphson method for the non linear system 
of equations reduces to solve the tridiagonal system of 
equations:  

RHSST =δ.     (7) 
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The index n represents the iteration number. The system is 
solved using LU decomposition with forward-backward 
substitution. The initial solution is taken as uniform 
distribution of the interior points. The convergence of the 
system depends on the matrix T  condition number, which 
is not known. However, notice that if the system is 
linearised, setting , the matrix becomes well 
conditioned and is diagonally dominant. Based on this 
observation, a strategy is described in section 3.2 that 
improves the robustness of the 1D boundary mesh 
generation.  

0)( =′ sg

2.2 Boundary driven control only  
The TQM algorithm first creates nodes along “best” split 
lines and then creates the elements. The node distribution 
along the split line is mainly driven by the grading value at 

the end points. The effect is that the boundary mesh is the 
main driver for the interior mesh, and undesirable boundary 
effects can propagate in the interior. The user has a good 
control on the element size variation on the boundary, but 
the control in the interior and the mesh transition is more 
difficult. For example, in I-DEAS, the user can input a 
local element length in the interior, but he cannot control its 
radius of influence.  Also, when the surface exhibits 
curvature in its interior but its boundaries are flat there is 
no easy way to automatically refine the mesh with respect 
to the curvature. In most cases the user will have to 
manually add interior local element lengths in these areas 
to get the desired effect. To overcome these drawbacks and 
provide a mean to automatically refine the mesh in the 
interior of a surface, with no user interaction, TQM was 
extended to work with a background mesh, presented in 
section 3.2.     

2.3 High distortion  
TQM is a 2D mesh generator that generates a triangular or 
quadrangular mesh in a parameter domain. This parameter 
domain can be developed directly from a CAD parameter 
space or indirectly through projection or flattening 
techniques. In many cases, the mapping between the 
parameter domain and the physical domain is not isometric 
and elements size and quality need to be adjusted in the 2D 
domain to result in the desired mesh size and quality in the 
3D domain. There are many approaches available to 
account for the local mesh distortion during the mapping. 
The most common approach [2] relies on the CAD query of 
continuous operators such as Curvature. These can turn to 
be expensive queries.  
Currently in I-DEAS, to minimize the computational cost 
and account for length distortion between the 2D and 3D 
space, each split line is sampled with nSample (10) 
interior points. These points are mapped back in 3D space 
and we compute the variation dsd /υ where υd is the 
arc length variation of the curve poly-line in 3D space and 

 is the corresponding variation of the split line in 2D 
space. This local scaling factor is then used to map the 3D 
mesh size to a corresponding 2D mesh size in the parameter 
domain. This is a very simple and robust approach, 
however one main drawback is that the scaling is 
unidirectional (along the split line). In section 3.3, a 
different approach to account for the local distortion is 
discussed.     

ds

3. TQM EXTENSIONS AND 
ENHANCEMENTS 

The main usage of TQM in I-DEAS is for structural 
analysis with a constant mesh size. In this range the 
software performs fairly well. For boundary curvature 
adaptation the process is automated but might sometimes 
become unstable, resulting in poor node distribution 
transition.  The interior surface curvature adaptation is not 
automated and has to be done through user input of interior 
local element sizes.  
 



3.3 Distortion correction From now on, a stitched tessellation representing 
“accurately” the 3D surface or surfaces to be meshed (for 
example an STL representation from a CAD system) is 
assumed to exist. The corresponding 2D tessellation in the 
parameter domain, thus a discrete one to one mapping 
between 2D and 3D space, is also assumed to exist. In 
short, a triangle map, discuss in section 6, is available  (see 
figures 7a, 7b). 

Our approach to account for the local distortion is to first 
create a sample mesh in the 2D domain, map it back to 3D 
space using the facet triangle map and compute the length 
distortion at the sample points. This gives a length scale 
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that multiplied to the 3D grading value represents the 2D 
grading value. S(i) represent the ring of first neighbor 
nodes to node i. The length scale factor provides a local and 
isotropic estimate of the size distortion, is computationally 
inexpensive. One drawback is that there is no attempt to 
create stretched elements in the 2D space, only size varies. 
Given the 3D size variation, the scaling factor is applied. 
For example, a 3D constant size in 3D space will result in a 
varying element size in 2D space. The 2D mesher is then 
instantiated again with the 2D sample mesh as the 
background mesh with computed 2D sample grading values 
that drive the resulting final mesh. The 2D final mesh is 
mapped back to 3D space using the facet background grid.   

 
They are many possible answers to the critical and common 
adaptive sampling questions: How many sample points? 
Where? What size? One answer could be to delegate the 
responsibility to the user. To get the desired sampling 
adaptation to the curvature both on the boundary and on the 
surface, it is proposed to leverage the surface STL 
representation.  For the boundary curves, the facet points 
provide an adaptive sampling of the boundary curvature 
(see fig. 4).  

3.1 1D boundary discretisation 
For uniformly distributed and smoothly varying grading 
values, the non-linear tridiagonal system (7) exhibits a 
unique solution because the non-linear terms cancel out and 
the matrix is still well conditioned. However, when using 
an adaptive sampling point strategy with high grading 
values gradients, the system becomes ill–conditioned and 
might never converge to a solution. The solution algorithm 
has been enhanced by monitoring the convergence of the 
non linear system and when the solution oscillates and does 
not converge, after a fixed number of iterations, we restart 
the solution using the current solution but this time solving 
the linear system rather than the non linear one. This 
approach has proven to be very robust and is able to handle 
highly non-linear distributions and grading variations, even 
extreme cases with noisy input data. This strategy has the 
desired effect to smooth out the non-linearity due to high 
frequency input data. 

3.4 Mesh transition  
For constant size meshing, using the interpolation domain 
to determine the grading values along the split line can lead 
to sudden jumps in mesh size. One could smooth out the 
field of mesh size to get a smoother distribution. Instead, a 
parabolic distribution of the mesh size was simulated by 
keeping the two end points of the split line and adding a 
sample point half way with grading value equal to the 
global size.  The grading at the sample points along the 
split line is then obtained as the minimum value from 
interpolation and the harmonic interpolation using the 
grading values at the end points and the midpoint along the 
line. This strategy proved to be valuable in cases where the 
split line connected two small features (i.e. end points have 
small grading values) so that the small feature size did not 
propagate along the split line. 

3.2 Flexible background mesh approach 
4 SIZE CONTROL  In order to provide better control over the interior element 

size variation, as is necessary in surface curvature 
adaptation, the TQM algorithm was enhanced to work in 
conjunction with a background mesh that provides an 
interpolation domain for the size variation. There are two 
type of background meshes used: 1) a background mesh 
resulting from the flattened faceted representation that is 
used as an interpolation domain for the 2D to 3D mapping 
function (see fig.  7d) and 2) a background mesh resulting 
from an initial sample mesh (see fig. 7e).  

There are various types of size control that a user may 
want, each one with different computational cost. Three 
types are defined, ranging from the lower cost to the higher 
cost: None, constant, curvature.  
• No size control: The sample mesh is a coarse mesh 

formed by the boundary nodes and with no additional 
interior nodes. This approach is fast and can be used if 
the quality/distortion of the final mesh is not critical or 
if the space strategy used produces very little 
distortion (fig. 8b, 8c, 8d). 

The split line node generation was modified. As was 
discussed in section 2.3, the split line is still sampled with 
10 uniformly distributed sample points, however, the 
grading at the sample points is determined by interpolation. 
As the nodes are equally spaced along the straight line, the 
interpolation is quite fast since the result of the previous 
node triangle location is used to start a triangle walk to 
locate the next one. Also, special attention has been given 
to the robustness of the triangle walk algorithm in order to 
handle highly stretched, even flat, triangles that often occur 
in STL data.    

• Constant size control: The sample mesh is the initial 
mesh obtained without any account for the distortion. 
Distortion at sample points is computed leading to a 
2D size interpolation domain that drives the 2D 
mesher. This is the preferred approach if the final 
mesh quality/size control is critical for a given 
constant size (fig. 8e, 8f, 8g)  

• Curvature size control: The sample mesh is the same 
as in the constant size control case but this time the 3D 



Extra sample point  mesh size is computed as a function of the curvature  
(fig. 9b, 9c). 

 
gj gj+1 

Although, we discuss a self-contained approach with the 
sample mesh internally generated, all the concepts are 
general and the sample mesh could be provided as input 
with the field of 3D sizes derived from an analysis, as is the 
case of adaptive meshing to a solution. With that data as 
input, the mesh generator will provide the desired mesh.  

 

 
Smart size control [8] is another important variation on the 
size control that has not yet been implemented.    

4.1 Curve Size Control 
In order to adapt the boundary to the curvature we first 
need to compute the curve curvature. Two options are 
possible: line curvature or surface curvature.  

4.1.1 Line curvature 
 
 
 
 
 
 
 
 

Fig 4. Poly-line formed by STL facet points 
(ruled surface : line curvature =surface curvature) 

 
The line curvature does not take into account the adjacent 
surface curvature. The curve has a poly-line representation 
formed by facet points (fig. 4). At each interior point, to the 
curve, the line curvature is computed as the inverse of the 
radius of the circle passing through 3 consecutive points. 
When these 3 points are collinear, the radius is set to 
infinity. At the curve end points, the curvature is computed 
by extrapolation.  Furthermore, the minimum line curvature 
at end points is taken from all curves that share the vertex.    

4.1.2 Surface curvature  
In section 5 we will present discrete surface operators to 
evaluate curvature. The minimum radius of curvature is 
used at the boundary points to estimate the local surface 
curvature.  

4.1.3 Line curvature versus surface 
curvature. 

Either type of boundary curvature, line or surface, an 
average or a minimum can be chosen depending on the type 
of adaptation the user wants. The line curvature tends to 
highly refine small holes in flat areas. These can be very 
small geometry features compared to the mesh size that 
only need to be represented with a minimum of 3 to 4 
points (fig. 6b). In all examples presented in this paper, 
only the surface curvature has been used.  

4.1.4 Sampling refinement 
 

 
Fig. 5 – Under sampled boundary curve 

 
For curvature size control, the facet point representation of 
boundaries near long flat regions close to fillets (fig. 5) 
need special attention. In a sense, these boundaries are 
“under sampled” and sample points need to be added to 
properly capture the flatness of the curve. The algorithm 
works as follows :  

• Given a curve , the arc length parameter 

location t  of its sample points  and a global 

mesh size  

C
j

S
jP

g

• Loop over segments [  ], 1+jj tt
o Compute it length  jL
o Segment grading average 

( )12
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+= jjj ggg  

o If  jlgjg LSg λλ <<
−

� Add extra sample point at the 
mid point. 

� Assign grading value equal to 
at this extra sample point.  gS

The parameter gλ is a constant representing the grading 

ratio between the local grading and the global size, while 
the parameter lλ represents the inverse of the minimum 
number of intervals desired. The first part of the inequality 
states that the grading at the segment end points is very 
small compared to the global size. The second part of the 
inequality states that the segment length is large compared 
to the global size. By adding a point halfway, a parabolic 
node distribution will result. In the examples, values of 

0.4=gλ and 3/1=lλ  have been chosen. 

5 SURFACE SIZE CONTROL  

For a constant size control the 3D mesh size is a field of 
constant values. For a curvature size control the mesh size 
becomes function of the local surface curvature evaluated 
at the sample points.  

5.1 Continuous surface operators 

Given a surface , the two principal curvatures and 

of the surface along the two orthogonal principal 

direction vectors (

S

1e

1K

2K
), 2err

are the extrema values of all the 

normal curvatures. The normal curvature 
)(αNK

to the 



surface at a point P with unit normal  along a unit 

tangent vector 
r

is defined as the line curvature of the 

curve formed by intersecting the plane 

S N
r

, NP
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),( αer
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 with 

the surface S . The mean curvature is defined as the 
average of the normal curvature:  
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with )( iPθ representing the total vertex angle.  

The Radius of curvature at a point  along the direction 

of the edge  is:  
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  (8) and the minimum radius of curvature at point Pi : 

ij
j

i ρρ min=  
The Gaussian curvature is defined as the product of 
the two principal curvatures: 

GK

 At each point P one can compute the vertex angle excess 
)(2 Pθπ − that also represents the (total) Gauss 

curvature at an interior point:  
KG =

    (9) 

and the mean curvature is expressed as the average of the 
two principal curvatures : )(2 PdAKG θπ −=∫∫    (14) 

The discrete gaussian curvature at point P can be 
approximated by: )2KK H =

   (10) )(/))(2()( PVorPPKG θπ −=  (15) 

with computed as the voronoi area at a point if 
all triangles are acute and for obtuse triangles the 
containment circle is used instead of the circumscribed 
circle criteria (i.e. instead of joining adjacent edges 
midpoints to the center of the circumscribed circle they are 
joined to the midpoint of the (opposite) longest edge (fig. 
5).   

)(PVor
5.2  Discrete surface operators 
 
Given a triangle map, the first and second order attributes 
of the surface (normal vector, mean curvature , 

Gaussian curvature ) can be approximated [9], [10]. 
HK

GK The discrete normal curvature is derived from the formula  
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with ijα and ijβ the two angles opposite to the edge 

in the two triangles sharing the edge (see fig. 5).  )jP,( iP
The discrete mean curvature normal is given by : 
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and the approximation of the normal curvature is obtained 
as: 
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r
=   (18) Fig. 5 Triangle map 3D to 2D space (Voronoi area with 

modification for obtuse triangles)  
 All the above formulas are the discrete counterparts of the 

continuous first and second order attributes of the surface.  First we compute the discrete normal as an angle weighted 
average of the normals to the facets surrounding the point.  r  

Sk
T

iN
k∑

∈=
r

   (11) 

In [11] a measure of the deformation of a triangle between 
2D and 3D space is proposed :  
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By summing over all the triangles, this formula provides a 
measure of the total distortion induced by the mapping used 
in the triangle map between the 2D and 3D space. The 
global measure could be used as criteria to select the space 
development strategy with least distortion and/or to 
improve an initial parameter domain by minimization of the 
global distortion measure. Currently the curvature 
adaptation strategy only considers the minimum radius of 
curvature, but experimentation with other criteria is 
underway.  
 
The mapping between the discrete curvature and the 3D 
size is as follows [10]: 

• Given ε  a percent deviation to the original 
geometry. 

• Given a global size  globalS

• Compute the constant )1( εεγ −=  

• Look up in the triangle map for the minimum 
radius of curvature, iρ .  

• Compute local 3D size:  
   

γρ ×= i
D

iS 3

• Bound , D
iS 3

global
D

iglobal SSS <<× 3

dLenRatio
1

   

A value of was chosen to control the 
minimum size allowed during curvature adaptation.  

10=dLenRatio

6 TRIANGLE MAP  

The triangle map keeps a map between the 3D mesh and 
the 2D mesh and also provides a wealth of information 
about the surface. There are two triangle maps that we use. 
The STL triangle map (fig. 7a, 7b) and the sample mesh 
triangle map. One starts with a given STL of a surface to 
mesh (fig. 7a). The node coordinates in 3D space and the 
mesh connectivity are stored in the triangle map. Using a 
space development strategy (in all the examples presented a 
flattening strategy is used), the 2D parameter domain (fig. 
7e) is created and the map x(u,v), y(u,v), z(u,v) is stored for 
the facet points. The 2D parameter domain is an 
interpolation domain for the mapping between the 2D space 
and the 3D space. Next, all the discrete operators are 
computed as well as the distortion between the 2D space 
and the 3D space. The STL triangle map is always used to 
map the nodes back to 3D space. Another use of the STL 
triangle map is during the boundary node generation with 
curvature size control. 
 As mentioned in section 4.1, we use the surface curvature 
that we obtain directly in the look up table of the triangle 
map. The boundary nodes were generated in 3D space and 

they need to be mapped to their corresponding 2D space 
value. To do so one could perform an exhaustive 3D point 
in triangle location. Instead, as the curve is represented by a 
poly-line of facet points, we store the parameter location of 
the facet points along the curve. For a mesh point generated 
along the boundary curve at the parameter location t, we 
find the facet point interval  [ti, ti+1] that contains t and use 
a linear interpolation to find the corresponding 2D 
parameter location (u,v). The 3D boundary node loop is 
then mapped to the 2D plane. The grading value at the 
boundary nodes is computed as an average of the two 
adjacent edges length at the points. This gives us the “real” 
2D size that already accounts for distortion.  
The sample mesh is generated in 2D space using the TQM 
meshing algorithm with the desired mesh size. At this 
stage, the size map has not been created yet. The grading 
values along the split line are computed using the piecewise 
harmonic interpolation (equation 1). The sample mesh is 
mainly uniform (unless we are using no size control) and 
provides a sampling field of interest for the given mesh 
size. The 2D mesh is transformed back to 3D space using 
the STL triangle map, and a sample mesh triangle map is 
created. This latter triangle map provides a look up table to 
compute for each point in the sample mesh, its distortion, 
its surface curvature etc …The data (distortion, curvature 
etc…) is computed at once for the whole mesh and stored 
in the triangle map.  
The boundary discretisation of the sample mesh and the 
final mesh are identical and need not be regenerated. The 
size map is created and will be used as a size interpolation 
field for the final mesh. 

7 SIZE MAP  

The size map is a combination of the size control and the 
triangle map. The size control provides the 3D size 
variation on the surface for the sample mesh while the 
triangle map provides the size distortion. The size map 
combines both data into one single value. For example, for 
a constant 3D size mesh, the size control has a field of 
constant values and only the distortion factor varies at each 
point of the sample mesh. The 2D scaled mesh size is the 
product.  

8 EXAMPLES  

 
Fig. 6a - Small hole  



 
Fig. 6b  - Small hole zoom 

Figure 6 : smooth size transition for small 
features. 

8.1 Smooth transition from small holes to 
large constant size 

Figure 6a represents the final mesh for a square with a 
small hole. The diameter of the hole is 1 while the square 
size is 100. A mesh size of 12.5 has been used.  The hole 
has been represented by 5 elements and the mesh 
transitions smoothly from the small to the large size (fig. 
6b). 
 

 
 

Fig. 7 a –3D STL of an hemisphere 

8.2 Developed space distortion comparison.  
Figures 7 (b,c,d,e) illustrates the advantage of the flattening 
technique [5] over the Maximum Area Plane (M.A.P.)  

projection used in I-DEAS. Figure 7a represents the STL of 
half a sphere. Figure 7b represents the 2D parameter space 
resulting from the projection technique. Notice the high 
distortion along the boundary where triangles have been 
“squashed”.  Figure 7c represents on top the 2D final mesh 
and on the bottom the corresponding 3D mesh obtained 
with the option of constant size control. Highly distorted 
elements are generated along the boundary. Clearly, a 
projection technique is not satisfactory in local areas where 
the normal to the surface is orthogonal to the direction of 
projection and a small change εd in the 2D space tends to 
infinity in the 3D space.  
Figure 7d represents the flattened STL mesh.  This time the 
lengths have been preserved along the boundary and the 
highest distortion seems to occur around the pole. The final 
mesh with constant size control is presented in figure 7e. 
The flattening space strategy produced a more isometric 
mapping leading to the good mesh quality.  
Projections techniques are computationally inexpensive but 
they are restricted to domains that can be projected and 
therefore work well with low curvature domains. On the 
other hand, flattening techniques, depending on the type of 
domain at hand, result in more isometric mapping (works 
well for developable domain independent of the curvature) 
but are in general more computationally expensive. They 
also have their own limitations (cannot flatten a closed 
surface without cutting it), but they are less stringent than 
projections techniques.  
 

 
Fig.  8a – 3D STL of a damper 

8.3 Size Control comparisons.  
This example illustrates the results obtained with various 
types of size control. The mesh size is 5 in all cases. 
Figure 8.a represents the initial STL. In figure 8b and 8e 
the sample meshes for no size control and constant size 
control options are presented. Figures 8c and 8f provide a 
comparison of the resulting 2D final meshes for 
respectively no size control and constant size control. The 
mesh in fig. 8f has a smoother variation of the the size than 
the one in fig. 8c, due to a richer sampling of the curvature 
variation  and therefore a richer interpolation domain for 
the distortion scaling factor..  
 



 
Fig.  9a – 3D STL of a bracket 

8.4 Curvature adaptation.  
Figure 9a represents a bracket with fairly complex 
curvature patterns. Figure 9b demonstrates how the 2D 
mesher is able to accurately adapt to the curvature pattern 
and figure 9c shows that the refinement, when mapped 
back in 3D space did occur in the correct locations. Notice 
also, the 1D boundary curvature adaptation and how the 
holes in flat regions were not refined as the surface 
curvature, not the line curvature, was used in these 
examples.  
 

 
Fig. 10a- 3D STL of another bracket 

 
Figure 10a, 10b and 10c is another example of curvature 
adaptation. Notice in figure 10b that the 2D mesher 
accurately captured the high curvature areas and started to 
pick up the lower curvature of the rear flaps both on the 
boundary and the interior.  
  

9 CONCLUSION  

Recent progress and extensions to increase TQM flexibility 
to handle large variations in mesh size all across a surface 
have been presented and demonstrated.  
 
An approach that uses the surface STL data as sample 
points for the boundary discretisation and automatically 

generates a sample mesh for the interior has also been 
presented. A natural way of getting the sample mesh, based 
on the final mesh global size, proved to be a good sampling 
strategy. The price to pay for the additional quality is the 
cost of meshing the surface twice. It is the user’s choice 
whether to incur this extra cost.  
 
The curvature adaptation presented is robust and transitions 
smoothly between high and low regions of curvature. 
 
Finally, we have tried to isolate independent concepts such 
as size control, triangle map and size map that put together 
provide tremendous flexibility. 
 
This work is still at a preliminary stage with emphasis on 
flexibility and surface mesh quality. Future work should 
include smoothing techniques that are “adaptation 
preserving”, a study of the viability of using the STL as 
sample mesh, smart sizing, and study and development of 
“best practices/strategies” to get a good quality surface 
mesh at lowest cost.   
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Fig. 7d – 2D flattened STL. 

 Fig.  7b – 2D  projected  STL using Maximum Area 
Plane (M.A.P.)  

 
 

 
  

Fig. 7c – M.A.P., constant size control. Top: 2D final 
mesh. Bottom: 3D final mesh 

Figure 7e - Flattening, constant size control. Top: 
2D final mesh. Bottom: 3D final mesh 

  
 

Figure 7 :  Developed space distortion comparison 
between (left) Maximum Area Plane and (right) 

flattening. 

 
 
 
 

 
 



 

 
  

  

Fig. 8b  -2D  sample mesh, size control none. Figure 8e  - 2D  sample mesh , size control constant 

  

  
Fig. 8c – 2D final mesh, size control none Fig. 8f - 2D final mesh, size control constant 

  
  

  
  

Fig.  8g - 3D final mesh, size control constant Fig. 8d –3D final mesh , size control none. 

 Figure 8 – Size control comparison between (left)  
size control none and (right) size control constant.  

 



  
  

Figure 10b – 2D final mesh Fig. 9b - 2D final mesh, curvature size control 

 

 

 

  

 
 

Figure 10c – 3D final mesh 
Fig. 9c - 3D final mesh, curvature size control 

 
   
 

Figure 10 – Curvature adaptation of a bracket 
around high and low areas of curvature. 

Figure 9 – Curvature adaptation of a bracket with 
complex curvature patterns  
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