
BACKGROUND OVERLAY GRID SIZE FUNCTIONS

Jin Zhu, Ted Blacker, Rich Smith

500 Davis Street, Evanston, IL, U.S.A. jz@fluent.com

ABSTRACT

This paper describes a new technology of mesh size control using a background overlay grid size function. A background overlay
grid is generated first according to the defined size functions and then is used as the base grid for determining the mesh size at each
point during the meshing process. The definitions, classifications, implementations and control algorithms of three types of size
functions including a fixed size function, a curvature size function and a proximity size function are presented in detail. Meshing
results with controlled mesh sizes are given, and considerations for further improvement are listed.

Keywords: mesh generation, size control, background grid, size functions.

1. INTRODUCTION

In the mesh generation field, the mesh size control is very
critical to mesh quality and to the successful field
simulations using the generated mesh. The mesh sizes need
to catch local details in areas of the geometry where small
features exist. On the other hand, in non-critical areas of the
geometry, the mesh size can be large as long as the mesh
transition is smooth enough. However, it is tedious to
manually determine the local features of the geometry and
mesh these entities by desired sizes. Premeshing boundaries
of the domain with the desired size is a standard way of
obtaining size transition and gradation. However, the user
has no direct control over the mesh grading on the geometry.
Local refinement of an existing mesh is another option.
Unfortunately, unrefined meshes will form a fixed constraint
to the refined areas and results are not always satisfactory.

As a simple example of the importance of size functions,
consider Figure 1. The geometry is a 10x10 square with a
circular hole of radius 0.5. In Figure 1(a) the inner circle is
pre-meshed with a size of 0.05 and rest of the face is meshed
with a size of 1.0 by an advancing front triangle meshing
algorithm. Transitions are handled by the algorithm itself,
with no reliance on a size function. A total of 5,656 elements
are generated. In (b), the same algorithm is used, but a size
function is prescribed which guides the meshing. The size
function used prescribes a size of 0.05 at the hole boundary
and a geometric growth rate of 1.2 based on the distance
from the hole. This growth is limited by a maximum size
specified as 1.0. There are only 1,950 elements generated in
this case. You can see that the mesh gradation is well
controlled by the growth rate in (b) compared with the mesh
pattern in (a). When meshing the same face with a
quadrilateral/paving algorithm [1], no mesh could be
obtained without a size function because of the extreme

gradation difference and the lack of interior gradation
control. With the size function it can be meshed nicely, as
shown in Figure 1(c).

During the meshing process it is highly desirable that some
guidance be provided to the mesh tools to specify the size of
elements to be defined and the variation of size from one part
of the domain to another. Sizing and gradation control can be
determined during the meshing process or more commonly
as an a priori procedure. As an a priori procedure, a size
function is defined over the entire domain. The sizing
function, d=f (x), where d is the target element size and x is
the location in the domain, can be customized for specific
geometric or physical prosperities. The sizing function may
take into account surface features as well as physical

(a) Circle pre-meshed with size 0.05, face meshed
with size 1.0

(b) Face directly meshed with fixed size function.

(c) Face meshed with quads

Figure 1. Comparison of meshing results from: (a)
pre-meshed inner circle with no growth control and

(b) from size function with growth controlled

properties in determining local element sizes. Such surface
features as proximity to other surfaces and/or surface
curvature can be used to control surface mesh density
distribution. Physical properties such as boundary layers,
surface loads or error norms from a previous solution may be
considered. For instance, in an adaptive finite element
scheme, a size specification in the simulated field is deduced
from simulation results, usually via an error estimate. This
may then be combined with face geometric constraints being
considered. The size specification is then normalized by
metrics and this metric map that defines a control space is
used to control the mesh gradation [2].

Many authors have described the use of some form of
element size control in the literature for a specific meshing

algorithm. Based on the spatial decomposition approach for
meshing purposes as pioneered about two decades ago by
Yerry, Shepard [3] and surveyed by Thacker [4] and Shepard
[5], a size-governed quadtree triangle mesh generation
method was presented by Frey and Marechal [6] to deal with
planar domains of arbitrary shape. The domain is first
decomposed into a set of cells. The size of the these tree cells
are adjusted to match the element sizes at boundaries of the
domain prescribed by a given size map, and the mesh
gradation is controlled by the level of refinement of the cells
using the [2:1] rule. Therefore, these cells have a size
distribution compatible with the desired mesh gradation and
so can provide a convenient control space which can be used
to determine the element size. Secondly, the quadrants are
triangulated accordingly to get full triangle elements. Finally
the triangles are optimized (i.e. smoothed).

Currently, a background mesh appears to be the most
commonly used means of defining an element sizing
function. In the background mesh method, collections of
vertices containing the sizing information are first selected.
Then Delaunay triangulation is performed with them,
inserting additional interior nodes. Finally the meshing tool
retrieves a target size at any location within the domain by
linear interpolating in a certain background triangle (for 2D)
or tetrahedra (for 3D).

Shahyar Pirzadeh [7] introduced an approach that adopted
uniform Cartesian grid and the elliptic grid point distribution
for generation of 2D unstructured mesh using the advancing
front technique. It was analogous to solving a steady-state
heat conduction problem with discrete heat sources. The
spacing parameters of grid points were distributed over the
nodes of the Cartesian background grid by solving a Poisson
equation. To increase the control over the grid point
distribution, a directional clustering approach was also
implemented. However, there will be some mathematical
difficulties when it is used for general 3D problems and/or
with non-nodal and non-linear sources.

More recently, Owen and Saigai [8] presented the method of
controlling element size on parametric surfaces, taking into
account boundary layers, surface curvature and anisotropy,
and using natural neighborhood interpolation. Related works
using background mesh can be found in [9 - 11].

Although the algorithms discussed above are effective and
useful in many aspects, neither gives a general and versatile
way of size control for all kinds of geometry and all types of
element. The goal of this work was to create a general way of
defining mesh size for all element types and for different
kinds of geometric features. The size function had to provide
very rapid evaluators that would be general for any meshing
algorithm. Also, local geometric effects had to be able to
radiate, or influence size on a more non-local area. For
example, tight curvature on one surface should affect other
edges/surfaces in close proximity to ensure a controlled
transition rate. This paper describes how these objectives
were met using a background overlay grid. The work will be
described by first defining the size functions provided to the
user and the size function initializations. Then details of the
use of a background grid are documented and examples of its
use given.

2. DEFINITIONS OF SIZE FUNCTIONS

2.1 Terminology
Our size functions are based on a distance controlled
radiation. To understand this definition, the parameters that
are common to all size function must be defined.

• Source entities: Source entities are a set of geometric
entities on which the mesh sizes are specified and from
which the mesh size is grown into affected areas. Source
entities can be any general geometric type including
vertex, edge, face or volume.

• Attached entities: the geometric entities on which the
size functions will have influence as the entities are
meshed. These include edge, face or volume. The
attached entity can be the same entity as the source.

When a size function is attached to an upper topology,
all lower topologies of the attached entity will be
influenced. When a size function is attached to a lower
topology, its upper topologies will not be affected.

• Growth rate: This parameter controls the geometric pace
with which the mesh size progresses from the source. It
is based on the distance of the point being evaluated
from the source.

In cases where the elements of significantly different
sizes are immediately adjacent to each other, both the
meshing tool and the simulation tool cannot perform
well. In order to maintain a desired growth ratio, the
target size is adaptively adjusted by applying a
geometric growth formula. This parameter specifies the
rate of this geometric progression.

• Distance limit: This variable specifies the range in
which the size function is valid. It is the distance for the
source mesh size to grow up to the size limit, but it is
not user controlled.

• Size limit: This is the maximum mesh size. When the
grown size at the given location exceeds the size limit,
this limit is used instead. Therefore, if the distance from
a given point to a source is larger than the distance limit,
we do not need to test the grown size and the size limit
is directly used.

Figure 2 demonstrates a single radiating size function. One
edge of a cube (upper right edge) is used as the source entity.
The spherically tipped cylinder, whose axis is the source
edge and whose radius is the distance limit, indicates an iso-
surface of the prescribed size function within which the size
function is valid. In the remaining areas of the cube that are
outside the cylinder shown, the size radiating growth has no
effect and size limit is used instead.

2.2 Definition
Based on practical applications and experience, the following
size functions have been provided in our algorithms:

Figure 2. Demonstration of the effective domain of

size function

2.1.1 Fixed size function
For a fixed size function, the mesh size on the source entity
is a constant value.

To define a fixed size function, all the parameters introduced
in section 2.1 are used, along with a “start size” specifying
the constant size of the mesh on the source entities.

2.2.2 Curvature size function
A curvature based size function specifies the mesh sizes on
the source entities relative to the degree of surface curvature,
i.e. finer mesh sizes in highly curved regions and coarser
mesh sizes in regions of low curvature. Curvature based size
functions can only use faces as the source entity. This feature
provides a convenient means of controlling the geometric
approximation of the mesh elements. This varying size on the
surface can then radiate outward at the specified growth rate.

To define a curvature size function, all the parameters
introduced in section 2.1 are used, along with an angle. This
angle specifies the maximum angle between adjacent facets
of geometric faces. Using angle as an input specification
makes the curvature size function purely dependent on the
curvature and independent of the size of the model. For
example, a big sphere and a small sphere will have the same
number of elements generated if they have the same
curvature size function angle.

2.2.3 Proximity size function
A proximity size function controls density based on
geometric closeness of entities. The mesh sizes on source
entities are determined by the gap between faces (3D) or
edges (2D) of the source entities and the required number of
elements in the gap.

The first additional parameter for a proximity size function is
“cells per gap” which specifies the minimum number of
elements that should be put in the gap between any two
closest opposing faces (volumetric mesh) or two opposing
edges (surface mesh). Source entities for a proximity size
function can be faces or volumes. When a volume is used as
the source, all faces of the volume become source faces. The
proximity check for all source faces includes a check of the
proximity of edges on the face.

3. SIZE FUNCTION INITIALIZATION

In preparation for the generation of the background grids, the
three types of size function definitions must be initialized
differently. This initialization establishes the desired sizes
everywhere on the sources.

3.1 Fixed size function
All the source entities have a constant mesh size on the
entity, and no special initialization is needed.

3.2 Curvature size function
Initialization of curvature size functions requires the
generation of a faceted representation of the face that meets
the curvature requirements.

The facets on the source faces are created according to the
specified maximum normal angle deviation. This means that
the angle of rotation of the normal vectors of any two
adjacent facets on a common edge does not exceed the
specified maximum angle. This insures that the curvature of
the face can be accurately captured. The mesh size, , at a
node n of a facet of the source face can be computed by:

nS

maxmax /)2/sin(*2 ρθ=nS

Here is the larger curvature along two orthogonal axes.
If the computed size is larger than the size limit, or if a face
is flat (i.e. no curvature), then the specified size limit is used.

maxρ

It is possible for the local size, , to be larger than the
radiation from a nearby node would permit. Thus, if the
radiated size of node m at node n, , is less than , the
radiated size is used.

nS

Smn nS

mnS

3.3 Proximity size function
For initialization of the proximity size function, we also need
to create facets for the faces. First, a set of coarse facets is
created for each face according to the maximum normal
angle specified for the proximity facet. Next, the distance of
each facet center to another “visible” facet is calculated and
stored with the facet. Because these coarse facets are often
long and slender, such facet-based calculations may over-
extend the influence of gaps (see Figure 3a). To avoid this
undesirable effect, these coarse facets are further refined as
follows.

Within some maximum level of facet subdivisions, if the
maximum edge length of the current facet is larger than
several times its distance (or gap) to the target facet, then the
current facet will be split on the longest edge into two
smaller ones. The sub-facets will then be compared with the
target facet and iteratively refined as needed. Finally this gap
value is stored in each facet. This process is optimized by
computing the distance between the bounding box of current
facet to the bounding boxes of other target facets and
comparing the distance to the stored minimum distance. If
the computed distance is beyond the stored minimum range
of current facet, remaining calculations will be skipped. This
significantly reduces the amount of distance calculations
needed. Fig. 3b demonstrates that the refined facets localize
the gap influence.

(a) Unrefined gap influence

(b) Refined gap influence

Figure 3. Refinement of proximity facets

Also, since we are often only concerned about the gap within
volumes, if two facets are from faces that belong to the same
volume, we can make use of the relation of the facet normal
vectors to avoid unnecessary comparisons. If their normal
vectors, whose positive directions are defined as pointing
outward the volume, are pointing toward each other, which
means there is void space in-between, we can omit the
proximity check. Even if no volume is provided as the source
entity, we have to check whether the given source faces
belong to the same volume. If they do, internally we still
establish the volume pointer and compare the relation of face
facets normals in order to speed up the initialization.

If any face that owns the facet in the facet pair being
compared is a dangling face of the volume, the normal of its
facets is ambiguous and full calculations are needed.

Beside face proximity check (i.e. 3D proximity), an option of
performing edge proximity check (i.e. 2D proximity) is

given. During edge checking, all the edges of a face need to
be faceted into line segments. The distance between each pair
of opposing edge segments on the same face will be
computed and the shortest distance used to determine the
mesh size on each line segment. To speed up computation,
only the segment pairs within a mutually visible range will
be checked. To guarantee accuracy, a minimum number of
edge segments are created (50 in our implementation),
especially for very short edge loops.

For both the volume and face proximity controls, the mesh
size on the source entity is determined by:

cellsgapn NdS /=

Where is the smallest gap distance associated with a

facet, is the number of cells in the gap area.
gapd

cellsN

4. BACKGROUND GRID GENERATION

As a result of the size function initialization, the desired size
on all sources is known. The next step is to establish the
complete background grid. The background grid provides the
radiation mechanism for all the size functions. It also allows
multiple size functions to be combined into a global function.
The background grid is an axis-aligned octree-based mesh,
the size of the bounding box of all attached entities. The
background grid values are derived at all cell corners and
refined as needed to capture the size function gradients.

4.1 Background grid initialization
Setting up the background grid starts by generating a
bounding box of the domain of the attached entities.

To ensure resolution is not excessive, we find the dominant
direction which is the longest range of the bounding box and
divide it by a given number of lines in each grid (e.g. 3) to
obtain a unit length. We ensure all other directions are scaled
accordingly by this unit length, but require at least 2 grid
lines in each direction. This way, the resulting background
grids will be equi-sided cubic cells.

If a group of entities have exactly identical size functions
attached, a single united bounding box is used. This can save
time in cases where the bounding boxes of individual
attachment entities overlap. In a few cases where the
attachment entities are far apart from each other, it can
increase the time instead. However, an increase in speed is
noted for almost all practical geometries.

4.2 Establishing values at the background grid
nodes
Because the size on all sources, , is now known, we can
use the same approach to handle all size functions when
obtaining the mesh size at the background grid nodes. The
only difficulty is to identify which source mesh size to use
when growing to a given background grid node. This can be

determined by projecting the given grid point onto the closest
facet.

entS

When growing the size from the closest facet of the source
entity to the given corner point of the background cell, the
mesh size is successively progressed from the size on the
source entity. It is controlled by the defined growth rate, g ,
and the distance of the point of the background cell to the
source. The progression is iterative. During the progress, an
incremental distance expands step by step until the desired
point is within the region between two neighboring distances.
Suppose R is the distance of the given point to the source
entity, and are the two said distances, respectively.
Then the condition can be expressed as:

nR 1+nR

condition-exit: <= R <= nR 1+nR

Let be the mesh size at the previous distance and be
the mesh size at the subsequent distance. The initial values
for these variables are

nS 1+nS

 = = = nS 1+nS 1+nR entS

 = 0 nR

The following loop, once completed, will give the size and
radius of the two distances bounding the given point:

while (!condition-exit) {

nS = ; 1+nS

nR = ; 1+nR

1+nS = * nS g ;

1+nR = + ; nR 1+nS

}

A linear interpolation between the two bounding distances is
accomplished by this equation

γ = (R -) / (-) nR 1+nR nR

Here (0 <= γ <= 1). The actual size, , at the given point,
P, is computed as:

pS

pS = (1 - γ) * + nS γ * 1+nS

However, the final size is the smaller of the computed size
and the defined size limit.

pS = MIN (,) pS maxS

If a corner point is affected by several size functions, the
smallest mesh size will be taken for it.

4.3 Linear interpolation
Once the background grids are created, the mesh size at any
given point can be found by interpolation in the background
grids for any meshing processes. Since the background grids
are axis-aligned and well shaped cubes, finding the correct

background grid cell is trivial. Simple linear interpolation
can work well to give the mesh size at any point P(x,y,z):

∑
=

=
8

1i
iip SNS

Where is the mesh size at 8 corners of the cell which the
point falls into and is the tri-linear interpolation function
for each corner point. Suppose the local
coordinates

iS

iN

)(γβα ,, of the given point inside the background
cell can be expressed as

() (
() (
() (








−−=
−−=
−−=

minmaxmin

minmaxmin

minmaxmin

/
/
/

zzzz
yyyy
xxxx

γ
β
α)

)
)

Where ()minmin,min, zyx and ()maxmax,max, zyx define the
range of the cell. Then the mesh size at point P can be
expanded as

()()()
()()

() ()
()

()()
()

()

maxmax,max,8

maxmax,min,7

maxmin,max,6

maxmin,min,5

minmax,max,4

minmax,min,3

minmin,max,2

minmin,min,1

1

1

11

1

11

11

111

zyx

zyx

zyx

zyx

zyx

zyx

zyx

zyx

SS

SS

SS

SS

SS

SS

SS

SS

•=

•−=

•−=

•−−=

•−=

•−−=

•−−=

•−−−=

αβγ

βγα

γβα

γβα

γαβ

γβα

γβα

γβα

4.4 Background grid refinement
Background grid generation is the most expensive part of the
overall process. To speed up this bottleneck, some steps have
been taken.

One of the most important considerations is when and how to
stop background grid refinement. A criterion has to be set to
ensure that an almost linear relation of mesh size has been
reached within a cell and so there is no need to refine the cell
again, no matter what the actual ratio of mesh sizes within a
cell is. This is because the meshing size at a point is
computed by linear interpolation in the background grid
using mesh sizes at its eight corner points. The linear relation
can be tested by comparing the deviation of the linearly
interpolated mesh size at the center of a background grid

 (i.e. averaged size at 8 corner points of a cell) from the
defined mesh size (i.e. the actual size computed from
size functions), and take the relative percent as the error
estimate. The background grid will be refined if the relative
error,

linearS

defS

δ , is larger than the specified level of accuracy, tol∆ ,
which can be expressed by the following equation:

tol
def

deflinear

S

SS
∆<×

−
= %100δ

Where is a given error tolerance and is controllable by
the user.

tol∆

This seems a reasonable way of stopping the refining
process, but potentially non-linear distributions in other areas
of the cell cannot be caught nicely, especially in the earlier
stage of the refining process. This will lead to corruption of
grid generation, unless a constraint of one level difference is
applied for neighboring cells. As shown in Figure 4, if the
cell contains source entities whose smallest size, , is less
than the minimum size at the 8 corner points of the cell,

, then the centric size, , computed from the 8
corners is not accurate, so another refinement to the cell is
triggered.

minB

minC linearS

 Size

 A

 maxC

 defS

 B linearS

 minC

 C

 minB

 center Location

Figure 4. Refining criterion for a background cell
(A - actual size distribution from defined size

functions, B – size by linear interpolation from 8
corner points, C – source entities possibly with

smaller size inside the cell)

In any case, if the maximum range of the bounding box of a
background grid cell becomes smaller than the minimum
local size in the cell (at eight corner nodes or inside the cell),
stop refining the cell to avoid over-refinement.

4.5 Speed/Memory issues
Storage of the mesh size information in the background grids
can require a lot of memory. To speed up grid generation, we
save the computed mesh size at each corner point of the cell,
so that its neighboring cells can directly use the size at shared
corner points. This option improves the speed, but sacrifices
memory. An option is given to let the user decide whether
memory or speed is more important. Thus, they can choose
either saving the mesh size at unique grids or re-computing
the mesh sizes for each cell.

5. EXAMPLES

A few examples are given below to show the application of a
single type size function or a combination of them in the
meshing process. High quality meshes have been generated
using the defined size functions with very little effort.

5.1 Meshing the Clown Head
A single curvature size function is defined for meshing the
clown head. Normal angle = 20, growth rate = 1.2, size limit
= 2, and all faces are used as source and the size function is
attached to the whole volume. Figure 5(a) is the meshing
results of the whole head. Figure 5(b) and (c) shows the
eyeball and hat-tail, respectively. You can see the meshes are
nicely transitioned according to the curvature of the surface.
Also, the radiation effect of the tight curvature on
neighboring surfaces is shown.

(a) Whole head

(b) Eyeball

(c) Hat-tail

Fig. 5 Meshing the clown using a single
curvature size function

5.2 Use of 2D and 3D Proximity size functions
Figure 6 shows how the 2D and 3D proximity size functions
work. In Figure 6(a) the proximity size function is defined as
follows: cells-per-gap =4, growth-rate =1.2, size-limit = 20
which is big enough so that the mesh size can grow without
any restrictions until hitting the boundary. The source face is
face A. The sizes are radiating from the source face into the
rest of the volume.

Figure 6(b) shows the shape of a volume with two dangling
faces (upper) and the meshing results (lower) of a volume 3D
proximity size function. Parameters are specified as follows:
cells-per-gap = 3, growth-rate = 1.2, size-limit = 2, three
faces (one side face A and two interior dangling faces B and
C) are used as source entities. The size function is attached
to the whole volume.

A

(a) 2D proximity

 C B A

(b) 3D proximity including dangling faces: shape of

the geometry (upper) and the meshing results
(lower)

Figure 6. Use of proximity size functions in volume
meshing

 5.3 Use of combined size functions
Figure 7 uses a combination of size functions to mesh the
volume. A fixed size function (start-size = 0.05, growth-rate
= 1.2, size-limit = 0.5, two flat planes A and B as source), a
curvature based size function (normal-angle = 10, growth-
rate = 1.2, size-limit = 0.5, two circular faces C and D as
source) and a proximity size function (cells-per-gap = 3,
growth-rate = 1.2, size-limit = 0.5, whole volume as source)
are defined and attached to the same volume. In common
areas where three size functions are effective, the smallest
size among the three size functions is chosen to set the local
mesh size.

Our last example in Figure 8 shows another model meshed
using combined size functions. Two curved faces are used as
source for both the curvature size function (normal-angle =

 A B

 C D

Figure 7. Meshing results using composite size
functions. Three kinds of size functions are

attached to the volume.

40, growth-rate = 1.2, size-limit = 1.5) and the proximity size
function (cells-per-gap = 2 growth-rate = 1.2, size-limit = 2).
Figure 8(a) is the outline of the geometry from which you
can see the two airfoils that are close to each other. It would
be difficult to mesh the areas between them if proximity size
functions were not used to specify the number of element in
the tiny gap. Figure 8(b) is the enlarged local mesh patterns
between the two airfoils after the volume is meshed. The
elements are generated exactly as specified and grown nicely
from the gap toward neighboring regions. The effect of the
curvature size function can also be seen around the wing tips.

(a) Shape of whole geometry

(b) Local detailed elements

Figure 8. Use of proximity and curvature size
functions in meshing a volume with airfoil voids

CONCLUSION

A general method of controlling mesh sizes and radiation for
all element types and for different kinds of geometric
features has been created. The defined size functions have
provided rapid evaluators that would be general for any
meshing algorithm. Local geometric effects have been
radiated to influence size on a more non-local area. The basic
algorithms of constructing the background grid and creating
fixed, curvature and proximity size functions have been put
forward. The criterion of refining the background grid has
been shown. Local mesh size at any point in the domain can
be interpolated from the pre-determined sizes at corner points
of the background cell into which the given point falls. The
proposed sizing method has been implemented in Gambit
product, and successfully tested on a wide variety of models
with excellent results.

In the future, other types of size functions can be added to
meet specific user needs. For example, we can add a size
function that catches the exterior proximity of the volume if
this is desirable. Also, we can add a size function that uses
pre-meshed entities as sources and uses the size of the
existing mesh on the sources to radiate. For some
applications it is also beneficial to have the directional size
functions with anisotropic properties.

Speed improvement for background grid refinement is also a
focus in the future work.

ACKNOWLEDGEMENTS

The authors express gratitude to Yongheng Shao for his
support to the work, and to Young Kyu Lee who has given
helpful suggestions in improving the background grid
refinement criterion.

REFERENCES

[1] Ted D. Blacker, Michael B. Stepheson, “Paving: A
new approach to automated quadrilateral mesh
generation”, Int. J. Numer. Methods Eng. Vol 32, pp.
811-847 (1991)

[2] Houman Borouchaki, Frederic Hecht and Pascal Frey,

Mesh gradation control, Proceedings of 6th
International meshing roundtable. Oct. 13-15, 1997.
Park City, Utah, USA.

[3] M.A. Yerry and M.S. Shepard, “A modified-quadtree

approach to finite element mesh generation”, IEEE
Computer Graphics Appl., Vol 3(1), pp.39-46 (1983)

[4] W. C. Tracker, “A brief review of techniques for

generating irregular computational grids”, Int. J.
Numer. Methods Eng. Vol 15, pp. 1335-1341 (1980)

[5] M. S. Shepard, Approaches to the automatic generation

and control of finite element meshes, Applied
Mechanics Reviews, Vol 41, pp. 169-185 (1988)

[6] Pascla J. Frey and Loic Marechal, “Fast adaptive

quadtree mesh generation”, Proceedings of 7th
International meshing roundtable. Oct. 26-28, 1998.
Dearborn, MI. USA.

[7] Shahyar Pirzadeh, “Structured background grids for

generation of unstructured grids by advancing-front
method”, AIAA Journal. Vol 31(2), pp. 257-265(1993)

[8] Steven Owen and Sunil Saigal, “Surface mesh sizing

control”, Int. J. Numer. Meth. Engng. Vol 47, pp. 497-
511(2000)

[9] J.Z. Zhu,, O.C. Zienkiewicz,, E. Hinton, J. Wu, “A

new approach to the development of automatic
quadrilateral mesh generation”, Int. J. Numer. Meth.
Engng. Vol 32, pp. 849-866(1991)

[10] S.A. Canann,, Y.C. Liu, A.V. Mobley, “Automatic

3D surface meshing to address today's industrial
needs”, Finite Elements in Analysis and Design. Vol
25. 185-198 (1996)

[11] R. Lohner, “Extention and improvements of the

advancing front grid generation technique”,
Communications in Numer. Method in Engng. Vol 12.
pp. 683-702(1996).

	ABSTRACT
	1. INTRODUCTION
	2. DEFINITIONS OF SIZE FUNCTIONS
	2.1 Terminology
	2.2 Definition
	2.1.1 Fixed size function
	2.2.2 Curvature size function
	2.2.3 Proximity size function

	3. SIZE FUNCTION INITIALIZATION
	3.1 Fixed size function
	3.2 Curvature size function
	3.3 Proximity size function

	4. BACKGROUND GRID GENERATION
	4.1 Background grid initialization
	4.2 Establishing values at the background grid nodes
	4.3 Linear interpolation
	4.4 Background grid refinement
	4.5 Speed/Memory issues

	5. EXAMPLES
	5.1 Meshing the Clown Head
	5.2 Use of 2D and 3D Proximity size functions
	5.3 Use of combined size functions

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

