
ADAPTIVE MESHING FOR CLOTH ANIMATION

Julien Villard1 Houman Borouchaki2

1IFTH, Troyes, Aube, FRANCE Julien.Villard@utt.fr
2UTT-LASMIS, Troyes, Aube, FRANCE Houman.Borouchaki@utt.fr

ABSTRACT

Most of numerical simulation methods regarding cloth draping are based on mechanical models. Graphically, the
representation of this model is likely to be a uniform grid. Fabrics being a very 
exible material, a number of wrinkles
appear on its surface when submitted to free or constrained motion (collision/applied load, supports). The problem
regarding the simulation run is to represent realistically the mechanical system surface and its associated motion
which are strongly related to mesh discretization. We propose a new method based on adaptive meshing allowing
the mechanical system to behave without any constraint related to a uniform mesh. Numerical examples are given
to shaow the eÆciency of the method.

Keywords:adaptive meshing, cloth animation, multi-grid methods

1. INTRODUCTION

Much research in computer graphics and mechanics
are focused on cloth animation. Clothes and fab-
rics animation consist in numerically simulating the
motion of cloth in a three dimensional environment,
where there are objects and/or physical phenomena
(gravity, wind, and so on). Cloth is a very 
exible
thin material without any elastic property. Therefore,
several wrinkles appear on its surface. To model a re-
alistic piece of cloth, a �ne discretization of the cloth
surface is then needed. But, it brings about a lot of
computational time. Most of people use coarse sur-
face discretization and in post{processing, interpolat-
ing methods [1] to obtain cloth-like surfaces.

We propose a new cloth animation method based on
a classical mechanical particles system, called \mass{
spring system". Cloth surfaces are initially discretized
using uniform quad meshes where edges are oriented
along the warps and the wefts directions. Each mesh
node corresponds to a mass of the mechanical system.
Then, in order to have an accurate representation of
the surface, especially wrinkles, the initial surface dis-
cretization is adaptively re�ned.

This paper is organised as follows. In section 2, some

previous works are recalled. In Section 3, we present
our contribution. In Section 4, we introduce the
adaptive mesh re�nement technique. In Section 5,
we develop a new mechanical model well adapted to
our re�nement strategy. In Section 6, numerical ex-
amples are given Finally, in section 7, some future
works have been addressed.

2. PREVIOUS WORKS

Terzopoulos et al. [2] were among the �rst to model
deformable objects using physics. Cloth is considered
as a deformable object with null thickness. The au-
thors employ the theory of elasticity to animate their
deformable objects. Each object has a potentiel en-
ergy of deformation and its surface is discretized us-
ing a uniform grid. Potential energy is zero when the
object is not out of shape. The motion equation is
numerically integrated using a semi-implicit method.
Given results are very interesting and they have in-
spired several subsequent works.

Breen et al. [3] have proposed a cloth draping tech-
nique based on fabric mechanical properties. Cloth
surface is discretized using a uniform grid where each
node is a particle of the mechanical system. For each



step of the simulation, authors let the surface free{
fall: only gravity and collisions are considered. Then,
system energy is minimized in order to reorganize the
cloth surface. Experimental data (Kawabata) are in-
serted in their model, to obtain more realistic surfaces.
Numerical examples were compared with experimental
results and their method gives good results. Compu-
tational time is about a week on a RS6000 workstation
for a 50 � 50 system.

Eberhardt et al. [4] have extended the model of Breen
et al. adding some properties speci�c to fabrics, like
hysteresis and anisotropic behaviours. To integrate
the system, the authors used the fourth order Runge{
Kutta method with an adaptive time step, that is
faster than the previous one. A tablecloth draping
(30 � 30 particles) needs about twenty minutes on a
R8000 Silicon Graphics.

Provot [5] has also used a system of particles. Cloth is
modeled with a network of masses linked together by
massless springs. Provot has presented a new method
allowing to have cloth animation with high contraints
such as a hanged piece of cloth. To model the non-
elastic behaviour of cloth, he used the inverse dynamic.
Explicit Euler's method is applied to integrate the me-
chanical system. This method is interesting, because
it is easy to implement. Numerous recent clothes ani-
mations are based on this model.

Carignan et al. [6] have extended the work made by
Terzopoulos. The authors were interested in dress-
ing virtual models. Mechanical model is derivated
from [2]. Nevertheless, a triangular mesh is employed
for each garment's piece that they sew together. the
authors have implemented the �rst algorithm for self-
collision detection.

Volino et al. [7] [8] have improved the work of Carig-
nan et al. [6] and that of La
eur et al. [9]. Cloth
surface is discretized using a coarse triangular mesh.
To obtain wrinkle surfaces that look like real cloth,
the mesh is interpolated in post{processing. The me-
chanical system is numerically solved with an explicit
integration, the fourth order Runge-Kutta method.
Examples show Marilyn Monroe wearing a dress and
also a piece of cloth in a rotating cylinder. No infor-
mation is mentioned about computational time, but
the most interesting work of Volino is the collision
detection algorithm that is very eÆcient. In recent
papers [10] [11], Volino used an implicit integration
method, that is faster than the explicit one.

Bara� and Witkin [12] have presented a very inter-
esting clothes animation technique. Cloth is repre-
sented by a uniform triangular mesh. They used an
implicit integration method to solve the continuum
formulation of the internal energy of cloth. Integration
method generates, at each time step, a sparse matrix

that is solved using a modi�ed conjugated gradient.
Furthemore, the authors have developped a technique
that used an adaptive time step. Results are very in-
teresting and computational time is very fast.

All these previous methods use uniform meshes, trian-
gular or quadrilateral. Nevertheless, some works have
been done using adaptive meshes.

Hutchinson et al. [13] were the �rst to show a multi-
grid method dedicated to cloth animation. Their me-
chanical system is the Provot one [5], a mass-springs
system. On the other hand, authors employed uni-
form quadrilateral meshes. The main idea is to gen-
erate a coarse uniform mesh at the begining of the
simulation and to re�ne the mesh when angle between
two edges exceed a given threshold. When this phe-
nomenon occurs, the four quad elements sharing these
two edges subdivide in sixteen smallest quad elements.
It is a good idea, but the mechanical system is not well-
adapted to this mesh topology and then, results are
not satisfactory. What is more, computational time is
very slow.

Lately, Zhang et al. [14] have presented a method us-
ing multilevel meshes. Their mechanical model is the
Provot one. Surface is discretized using uniform trian-
gular mesh. The authors simulate fabric draping with
a coarse mesh. When the mesh is nearly at equilib-
rium, the algorithm re�nes the mesh : each triangle
is subdivided into four smaller triangles, even in the
place where it is not needed. This process is executed
several times in order to obtain a �ne uniform mesh.
This method can only be used for \static" draping.

3. OUR CONTRIBUTION

The main goal is to model the mechanical behaviour
of cloth when it moves. We propose a new physi-
cally based model inspired by the Provot one [5]. This
model is represented by a network of particles linked
together by massless springs. The mechanical proper-
ties of fabrics (stretching, shearing, bending) are mod-
eled using springs. Stretching is the displacement of
the cloth along the warps and the wefts directions.
Shearing is the fabric displacement along the two diag-
onals directions. Finally, bending represents the cur-
vature of the fabric surface. These three phenomena
are very di�erent and they do not react in the same
way : on one hand, stretching deformation of cloth is
insigni�cant, but in the other hand, cloth surface can
be easily curved.

Our basic simulator's algorithm is an iterative proces-
sus of which each iteration includes two stages :

� Forces computation : stretching, shearing, bend-
ing, gravity, wind, and so on.



� Explicit integration of the dynamic system :P�!
F = m�!


For each simulation, the number of iterations depends
on the complexity of the scene.

In our �rst approach, we used the model described
by Provot [5]. First results seemed promising, but
we noticed that this model has some drawbacks. The
�rst one is that the results depend on the surface dis-
cretization and the second one is that it does not
conserve force momentum. Therefore, we have de-
velopped a new mechanical model, especially for the
bending force. This new model is well adapted to
our cloth surface discretization. We detail the Provot
model and our new model in section 5.

Geometrically, a coarse uniform mesh cannot represent
an accurate fabric surface, because generally, numer-
ous wrinkles appear on it. If we want to adequately
model a fabric surface, we must employ a �ne mesh.
But, each mesh node corresponds to a mechanical par-
ticle and it could be diÆcult to numerically solve a
large system in reasonable computational time. In sev-
eral articles cited above, authors use system with few
particles. Thus we have to make a choice:

� to use a coarse mesh and then quickly do an un-
realistic cloth simulation,

� or to use a �ne mesh and then slowly make a
realistic cloth simulation

In order to preserve the advantages of each choice,
adaptives meshes must be used. It allows us to reduce
the mechanical system and to accurately represent the
cloth surface. Another advantage is that no a priori
knowledge about the cloth evolution is needed. The
next section describes the adaptive re�nement strat-
egy.

4. ADAPTIVE MESHING

Cloth surface is initially de�ned by a coarse uniform
quad mesh. Mesh edges are oriented along the warps
and wefts directions and nodes are intersections be-
tween warps and wefts. When the cloth falls, the
corresponding mesh must be adapted to its geomet-
rical shape, This allows us to have an accurate surface
representation all along the simulation process. An
adaptive scheme consists in re�ning the mesh locally
when the curvature exceeds a given threshold. Two
problems appear :

� how to re�ne the mesh locally such that the warps
and wefts topology is preserved.

� which mechanical model can handle mesh re�ne-
ment.

To conserve warps and wefts topology, there are two
di�erent techniques. The �rst one consists in subdivid-
ing each curved quad element into four quad elements
of which the length is half the aimed element. In this
way, for each subdivided element, �ve new nodes are
created (one in the barycenter of the element and four
in the middle of its edges) if the adjacent elements were
not subdivided. The second technique consists in sub-
dividing in the same way the biggest elements sharing
curved nodes. For each subdivided element, �ve nodes
are created if it is necessary. These two methods gen-
erate non conform meshes (a node can be the middle
of an edge of which the element is not subdivided). To
ensure the conformity of the mesh, two kind of nodes
are then used: the active ones and the virtual ones.
Active nodes are the nodes for which the mesh con-
nexity is conforming. They share four elements and
participate in mechanical simulation of cloth. Virtual
nodes represent all the other nodes and are only cre-
ated to ensure warps and wefts topology. They share
three active nodes and their mechanical contributions
are transfered on their direct neighbour nodes.

As the surface curvature is well de�ned at a mesh node,
we consider the second re�nement technique even it is
more complex than the �rst one. To illustrate, �gure 1
shows three successive applications of this technique.
Initial state is four elements sharing the node P . A
�rst re�nement at P consists in subdividing the four
elements sharing P in sixteen elements, eight new ac-
tive nodes (the gray ones on the �gure) and eight new
virtual nodes (the white ones) are created. Next, a
second re�nement is done at a new node Q created at
the previous step. Four elements are subdivided into
sixteen elements; eight active nodes and eight virtual
nodes are then created. Finally, a third re�nement
is applied at P . In this case, only the three biggest
elements sharing P are subdivided. Two old virtual
nodes become active, �ve new active nodes and six
virtual nodes are then created.

P

(a)

P

(b)

P

Q

(c)

Q

P

(d)

Figure 1: Mesh raffinement in three steps

4.1 Refinement criterion

The re�nement criterion (at a node) is only based on
geometric properties of actual cloth mesh. A re�ne-
ment step is applied at a node if the local curvature of
the surface exceeds a given threshold. to avoid com-
plex computation, we approximate the local curvature



by the the deviation between the surface and the tan-
gent plane. This deviation is computed from an es-
timated surface normal at the node. The normal at
a node P can be approximated by the average of the
eight triangle normals sharing P by considering the
four direct neighbours of P and also the four barycen-
ters of each element sharing P , as shown in �gure 2.
The surface deviation in P represents the biggest an-
gle among the normal in P and the eight triangle nor-
mals described as above. For instance, this criterion is

Figure 2: Computation of a node normale

only based on the geometry of the surface, but it can
be useful to re�ne the mesh when collisions occur like
in [16].

4.2 Balancing meshes

The mesh re�nement criterion is purely geometric. In
fact, if the angular deviation from the tangent plane
at a node exceeds the given threshold, the mesh is
re�ned at this node. The repetition of this procedure
may create adjacent elements with important di�erent
sizes (as shown in �gure 10) and thus directly adja-
cent virtual nodes. In this case, the mechanical strain
transmission from virtual nodes to actives nodes be-
comes more complex. To avoid the creation of directly
adjacent virtual nodes, the mesh can be balanced us-
ing a classical quadtree method.

5. MECHANICAL MODEL

We considere a classical model based on a network of
particles linked together by massless springs. There
are three kinds of springs, corresponding to three me-
chanical properties of cloth (stretching, shearing and
bending) and we make improvements for the bending
force computation. Each particle of the mechanical
system corresponds to a node of the mesh and the
stretching springs are materialized by the edges of the
mesh. The position of each node A at time t is de�ned
by xA(t) which is the solution of the system governed
by the fundamental dynamic law:

X�!
FA = mA

�!
A (1)

where mA is the mass of the node A and �!
A is the
acceleration of A.

(a) (b) (c) (d)

Figure 3: Mechanical model

5.1 Forces computation

The mechanical system is based on two sets of forces:

� internal forces (characteristic of cloth): stretch-
ing, shearing and bending.

� external forces (the forces generated by the three
dimensional cloth environment): gravity, air re-
sistance, wind, and so on.

5.1.1 Internal forces

To compute internal force at each node, we consider
only its eight nearest neigbours which de�ne the four
quad elements sharing the node as shown in �gure 3.

Stretching

Basically, Hooke's law (2) is used to compute the
stretching force between a node A and one of its four
neighbours B, as illustrated in �gure 4.

Fstr(A;B) = Kstr � (`� `0) (2)

where ` is the distance jABj at time t, `0 the distance
[ABj at t = 0 and Kstr the sti�ness of the spring link-
ing A to B. This expression is applied in general cases

A B

`

~FB = �~FA~FA

Figure 4: stretching or shearing force

and then can be used for a uniform system (springs
having the same size). In the adaptive system, this
equation is modi�ed in order to take into account the
variation of sti�ness. When a node is added in the
middle of an edge, it is equivalent to replace a spring
with a size equal to `, by two serial springs with size
equal to `=2. Therefore, the sti�ness of these two new
springs must be adjusted to keep the mechanical sys-
tem coherent. The following formula (3) allows us to
compute stretching forces for each particle:

Fstr(A;B) = Kstr � 2
'(AB) � (`AB � `0AB) (3)



where '(AB) is a function that returns the level in
which the spring AB belongs The initial level corre-
sponds to 0.

Shearing forces

Shearing forces are computed like stretching forces,
only the sti�ness term is di�erent:

Fshe(A;B) = Kshe � 2
'(AB) � (`AB � `0AB) (4)

where Kshe is the shearing spring sti�ness and in this
case B represents a diagonally adjacent node to A.

Bending forces

In classical approach, there are two ways to repre-
sent bending forces along the warp and the weft direc-
tions. The �rst one is to use angular springs between
the two opposite direct neighbours. The second one is
to link the node by two springs : one to the second
neigbour and one to the opposite second neighbour.
In the �rst case, it seems diÆcult to de�ne good reac-
tion forces and in the second case, the second direct
neighbours are taken into account which can not be
handle by our re�nement strategy. We propose a new
approach for the bending forces computation, based on
beams mechanical behaviour. As shown on the �gure
5, the force modulus

�!
F applied to the end of the beam

is homogeneous to F =
EI � �

`2
. If we consider that EI

being equivalent to a sti�ness coeÆcient K and that
�

`2
equivalent to a displacement, then the expression

of the force modulus is equivalent to the general equa-
tion (2). In our case, if we consider the node P and

d

~F

`

�

Figure 5: Bending beam

its two neighbours A and B coming into bending com-
putation, we can say that edges PA and PB are two
beams rolling the node P (cf. �gure 6). When these
two beams are at equilibrium, these two beams are

colinear and dAPB is a � radians angle. To compute
the force applied in P , we �rst compute the two reac-
tion forces

�!
RA and

�!
RB respectively applied on A and

B. Secondly, we easily deduce
�!
F = �(

�!
RA +

�!
RB) (cf.

�gure 6). Let �!uA =
�!
PA

jj
�!
PAjj

and �!uB =
��!
PB

jj
��!
PBjj

be two

unit vectors and let �!n = �!uA ^ �!uB be the unit normal
vector to these two �rst vectors, then we have :

�!
RA = Kfle

�A + �B
`A � (`A + `B)

(�!uA ^ �!n ) (5)

where Kben is the sti�ness coeÆcient. The reaction

P

BA ~F

~RA

�B

(P)

~RB
�A

�

Figure 6: Our bending model

force
�!
RB is computed in the same manner. The inter-

est of this computation method is that reaction forces
depend on length of the edges AP and BP and the
system of forces is of zero torsor. It is an important
advantage of our model, because this is a multigrid
model.

Another advantage is that our model is not scalabil-
ity sensitive. To illustrate, two di�erent simulations of
a round tablecloth on a circular table are compared.
The �rst simulation was done with a mesh size h and
the second one with a mesh size h=2. The two obtained
meshes are identical. Figure 7 shows these two meshes
side by side and �gure 8 shows these two meshes su-
perposed.

Figure 7: Meshes with size h (top) and with size h=2
(bottom)

Forces applied to virtual nodes

We recall that virtual nodes are only used to ensure
the mesh conformity. Therefore, the forces applied



Figure 8: Two superposed meshes (underside
view)

to virtual nodes are transfered to their direct active
neighbours. As the mesh is balanced, the neighbours
of a virtual node are active nodes. Reaction forces
(stretching, shearing, bending) applied to a virtual
node are uniformly distributed to neighbour nodes be-
fore the numerical integration of the system. An ex-
ample is given in �gure 9; it shows the repartition of
the reaction forces in the case of stretching forces. The
force applied on Q,

�!
FQ is equal to �

�!
FP and this force

is equally distributed on A and B in this manner :
�!
FA =

�!
FB =

1

2

�!
FQ.

QP

A

B

�!
FP

�!
FQ = �

�!
FP

�!
FA =

1

2

�!
FQ

�!
FB =

1

2

�!
FQ

Figure 9: Translation of virtual node forces

5.1.2 External forces

To obtain realistic physical simulations, we need to
add some environmental forces. Among these forces,
gravity is the �rst one; it is applied in the same way
on every active node:

��!
Fgra(A) = �mA � g � �!z (6)

where mA is the mass of the node A and g = 9:81S:I:
is the gravity constant. We can also add a force re-
garding air viscosity :

��!
Fair(A) = �C � �!vA, where C is

a constant.

5.2 Mass computation

Each mesh node is a particle of the mechanical system,
and then each particle has a mass. Initially, before any
re�nement, cloth mass can be uniformly distributed
on mesh nodes. When the mesh is re�ned, some new
nodes are added and their mass must be computed.
As the mesh is not uniform, the mass can not be dis-
tributed uniformly on mesh nodes We can consider
that the mass of a node is proportional to the area
occupied by this node (which is computed in the same
manner as for suface normal at node). The mass of
an active node is equal to half the area, limited by the
eight triangles sharing this node constitued by the four
barycenters of each quad element and the four near-
est neighbours. This computation scheme is shown in
�gure 10.

P

(a)

P

(b)

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
��������

��
��
��P

(c)

Figure 10: Mass node computation scheme

5.3 Integration method

Basically, there are two di�erent methods to solve
the fundamental equation of dynamics, implicit ones
[12] [11] and explicit ones (fourth order Runge{Kutta,
middle point method, and so on). In the explicit Eu-
ler's method, new positions of mesh nodes are com-
puted in three successive stages:

8><
>:

�!
A(t+ Æt) =
1

mA

X�!
FA(t)

�!vA(t+ Æt) = �!vA(t) + Æt � �!
A(t+ Æt)
xA(t+ Æt) = xA(t) + Æt � �!vA(t+ Æt)

(7)

where Æt is the chosen time step. A \well{adapted"
time step must be choosen. if Æt is too small, simu-
lations will take a lot of computational time. If Æt is
too big, the system will diverge quickly. In fact, forces
in the system will be important and then, velocities
grow quickly and the system can diverge. To ensure
the convergence of the system the velocity is controled
by bounding its modulus: if jj�!v Ajj > �(�; Æt), then

�!vA = �(�; Æt)�
�!vA
jj�!vAjj

, where � is the space discretiza-

tion size.



Euler's method needs a small time step to ensure
a correct convergence of the mechanical step. Im-
plicit methods seem better for this kind of simula-
tion. Bara� et al. [12] have proposed an implicit
method that allows to quickly animate clothes on
body. Volino [11] proposed also an implicit method
that seems fast. These methods need fewer iterations
than the explicit one.

6. NUMERICAL EXAMPLES

In this section, we will show several examples of cloth
simulation.

Collisions detection are not addressed especially for
adaptive meshing with self-collision. Moreover, for
all examples shown, collisions with objects (table,
spheres) were resolved analytically. The simulation
code is implemented in ANSI C language and the tests
are realized on a J6000 Hewlett Packard workstation
(bi-processors 552MHz).

The following table shows di�erent results with dif-
ferent parameters like computational time, number of
elements, number of levels, spatial discretization size.
The number of iterations depends on the simulation.

Type nodes nodes levels time
(begin) (end)

hanging 400 3843 3 4m24s

spheres 400 12437 3 30m

ball 1444 11568 4 4m15s

ball 21316 21316 0 28m

Table 1: Computational time

6.1 Hanging cloth

This example shows a hanging piece of cloth. Only
two nodes of the mesh are sliding along a rigid rod
with frictions. We can see on the di�erent pictures
(11 and 12) that the model is very stable even with
high constraints. The initial state of the mesh is an
horizontal uniform mesh; gravity does the rest of the
job. The simulation is done at the 40; 000th iteration.

6.2 Four spheres

In this example, we let the piece of cloth fall over four
little spheres, corresponding to the four corners of a
virtual square. Time needed to end this simulation is
about 30 minutes, that is to obtain a free fall of the
cloth. This simulation was stopped at the 30; 000th
iteration. Figure 13 shows some di�erent steps of this
simulation.

Figure 11: Hanging cloth (front and behind view)

Figure 12: Hanging cloth (left and right view)

6.3 The ball

This simulation concerns the draping of a sphere.
There are 4 levels of re�nement that give a very
smooth surface. The �nal result needs about 4 minutes



Figure 13: Cloth falling over four spheres

and 10; 000 iterations. Figure 14 shows two interme-
diate stages and the �nal stage.

Figure 14: Square piece of cloth on a ball

6.4 Adaptive mesh versus uniform mesh

In order to prove that our method gives good results,
we compare two simulations based on the previous
simulation, that is, a piece of square cloth on a ball.
The �rst one was realized with an adaptive mesh :
space discretisation size of initial mesh is 20mm and
we stick the level of re�nement at 4. The second one
was realized with a uniform mesh : space discretisation
size is 2:5mm. Figure 15 shows the two meshes side by
side and �gure 16 shows these two meshes superposed.
We can see that these two meshes are nearly identical.
These two simulations were stopped after 10; 000 it-
erations. The uniform mesh has about 21; 000 nodes
while adaptive mesh about 11; 000 nodes. Computa-
tional time of the adaptive mesh is about 4 minutes
and the uniform one needs half an hour to give the
same result. Figure 17 shows the �nal adapted mesh
rendered in a 3D scene using POVRAY.



Figure 15: Two different simulations?

Figure 16: Two superposed meshes

Figure 17: 3D scene rendering of the ball example

7. CONCLUSIONS

In this paper, we have introduced a new method to
realistically animate cloth. Using adaptive meshing
allows us to reduce the number of mesh elements and

then to reduce computational time. In addition, multi-
grid method are tuned with di�erents parameters al-
lowing to easily control each simulation; cloth surface
is then more realistic than in methods employing uni-
form meshes.

This work is about the �rst stage of a cloth simulation
software. Future work include mesh simpli�cation,
collision detection and implicit integration. Mesh sim-
pli�cation is the reverse operation of mesh re�nement.
This technique consists in deleting the nodes and the
elements inside the area that become 
at (depending
on criterion) during the simulation. Collision detec-
tion is a hard work for cloth animation, because fab-
rics are very 
exible and cloth surface could intersect
itself. Our integration method is explicit and needs
many iterations to numerically solve the system. We
think that an implicit one can reduce computational
time signi�cantly.

References

[1] Hadap S., Bangarter E., Volino P., Magnenat-
Thalmann N. \Animating Wrinkles on Clothes."
IEEE Visualization '99, pp. 175{182. IEEE Com-
puter Society Press, San Francisco, USA, October
1999

[2] Terzopoulos D., Platt J., Barr A., Fleischer
K. \Elastically Deformable Models." Computer
Graphics, vol. 21(4), pp. 205{214. July 1987

[3] Breen D.E., House D.H., Wozny M.L. \Predict-
ing the Drape of Woven Cloth Using Interacting
Particles." Siggraph '94, pp. 365{372. Orlando,
USA, July 1994

[4] Eberhardt B., Weber A., Strasser W. \A Fast,
Flexible, Particle-System Model for Cloth Drap-
ing." IEEE Computer Graphics and Applications,
vol. 16, no. 5, 52{59, September 1996

[5] Provot X. \Deformation Constraints in a
Mass-Spring Model to Describe Rigid Cloth Be-
haviour." Computer Interface Proceedings, pp.
147{154. Quebec City, Canada, May 1995

[6] Carignan M., Yang Y., Magnenat-Thalmann N.,
Thalmann D. \Dressing Animated Synthetic Ac-
tors with Complex Clothes." Computer Graphics
Proceedings, vol. 26, pp. 99{104. ACM Siggraph,
1992

[7] Volino P., thalmann N.M., Jianhua S., Thalmann
D. \An Evolving System for Simulating Clothes
on Virtual Actors." IEEE Computer Graphics
and Applications, vol. 16, no. 5, 42{51, September
1996



[8] Vollino P., Courchesne M., Thalmann N.M. \Ver-
satile and EÆcient Techniques for Simulating
Cloth and Other Deformable Objects." SIG-
GRAPH '95, pp. 137{144. 1995

[9] B.La
eur, Thalmann N.M., Thalmann D. \Cloth
Animation with Self-Collision Detection." IFIP
Conference on Modeling in Computer Graph-
ics proceedings, pp. 179{197. Springer{Verlag,
Tokyo, Japan, 1991

[10] Pascal Volino N.M.T. \Comparing EÆciency of
Integration Methods for Cloth Animation." Pro-
ceedings of CGI'01. Hong-Kong, July 2001

[11] Volino P., Magnenat-Thalmann N. \Implement-
ing fast Cloth Simulation with Collision Re-
sponse." Computer Graphics International 2000,
pp. 257{266. 2000

[12] Bara� D., Witkin A. \Large Steps in Cloth Simu-
lation." Computer Graphics Proceedings, pp. 43{
54. ACM Siggraph, Orlando, FL, USA, July 1998

[13] Hutchinson D., Preston M., Hewitt T. \Adap-
tative re�nement for mass/spring simulations."
7th Workshop on Animation and Simulation.
Poitiers, France, 1996

[14] Zhang D., Yuen M.M. \Cloth simulation us-
ing multilevel meshes." Computers and Graphics,
vol. 25, 383{389, december 2001

[15] Ng H.N., Grimsdale R.L. \Computer Graphics
Techniques for Modeling Cloth." IEEE Computer
Graphics and Applications, vol. 16, no. 5, 28{41,
September 1996

[16] Etzmuss O., Eberhardt B., Hauth M., Strasser
W. \Collision Adaptive Particle Systems." Pro-
ceedings Paci�c Graphics 2000, 2000


