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ABSTRACT

A synthesis of various algorithms and techniques used for modeling and evaluating facet-based surfaces for 3D surface mesh
generation algorithms is presented, including implementation details of how these techniques are used within an existing mesh
generation toolkit. An object oriented data representation for facet-based surfaces is described. Numerical techniques for
describing G1 continuous curves and surfaces from triangles forming quartic Bézier triangle patches is presented. A combination
of spatial searching and minimization techniques to solve the smooth surface projection problem are described. Examples and
performance of the proposed methods are put in context with relevant surface mesh generation problems.
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1. INTRODUCTION

Computational simulations of physical processes modeled
using finite element analysis frequently employ complex
automatic mesh generation techniques. Robust geometric
representations of the physical domain are generally
required in order for mesh generation algorithms to be
reliable. Solid models or boundary representation (b-rep)
models are most frequently employed, typically provided
through a commercial computer aided design (CAD)
package or third party library.

Since automatic mesh generation algorithms must mesh an
underlying solid model, a geometry kernel is frequently
provided via an application programmers interface (API).
A small set of geometry and topology queries are sufficient
to provide automatic mesh generation algorithms with
enough information to generate a mesh for computational
simulation.

Since mesh generation algorithms usually access the
geometry representation via an API, any underlying
representation of the geometry may be used, provided it
meets the requirements of the prescribed API. In most
cases the underlying API is a b-rep model where curves and
surfaces are described by analytic expressions or non-
uniforms rational b-splines (NURBS). B-rep models based

on NURBS have become commonplace in the computer
aided engineering (CAE) community. Popular CAD
modeling packages use NURBS as the basis of their
geometry kernels, frequently integrating automatic mesh
generation algorithms as an added feature.

In recent years, facetted models have become more
important as an alternative geometry representation from
NURBS representations. Complete 3D geometric models
can be represented as a simply connected set of triangles.
In many cases, facetted models may be preferred or may be
the only representation available. For example, where
natural processes are simulated such as in bio-medical or
geo-technical applications, NURBS representations can be
difficult or impossible to fit to the prescribed data. Even if
an initial NURBS representation is used to model a
machined part, subsequent large deformations computed
from an FEA analysis may make the NURBS data
irrelevant. A facetted model may be the only alternative
for remeshing or refinement on a deformed model.
Additionally, facets in the form of STL (stereo lithography)
or graphics files, may be a convenient or even last-ditch
form of geometry transfer when other representations are
unavailable or inadequate. Furthermore, in some cases a
legacy FEA mesh may be the only geometric representation
available of the model. Extracting the surface faces from



the elements to form facets is one alternative to provide a
geometric model for subsequent design studies.

In the ideal case, mesh generation software has been
designed to work through a generic API, not relying on any
specific geometry representation. When this is the case, a
facetted representation may conveniently replace or serve
as an alternative geometry kernel with little or no change to
the mesh generation algorithms themselves. The objective
of the current work is to propose such a system. Significant
prior work has gone into developing a mesh generation
toolkit [1], consisting of a wide variety of algorithms
[2,3,4,5,6] that will access a generic geometry kernel
through a common geometry module [7]. Although the
commercial third party library, ACIS [8], has been
successfully used as a NURBS-based geometry kernel, an
alternative facet-based geometry representation is
proposed. It does not necessarily replace the ACIS
representation, but serves to enhance the existing capability
of the mesh generation toolkit.

This work is a synthesis of a variety of algorithms and
techniques used to successfully model surfaces for
purposes of mesh generation. This work does not present
or promote any specific meshing algorithm, but instead
proposes a geometry system that can be utilized by a
generic 3D meshing algorithm.

We first present some background to the problem in order
to put the subsequent discussion into perspective. We will
then describe the data representation used followed by a
detailed description of the numerical formulation of the
surfaces. Details of how the facetted surface representation
is used within the context of 3D surface meshing will then
be described along with relevant performance data.
Finally, several examples will be presented, showing
typical use of the facetted representation for 3D mesh
generation.

2. BACKGROUND

2.1 Previous Work

Several authors have presented similar facet-based systems
for use with specific mesh generation algorithms. For
example, Rypl and Bittnar [9] propose a method for
evaluating facet-based surfaces based upon interpolation
subdivision. This method utilizes the hierarchal recursive
refinement of the facets. Control points for a triangular
Bézier patch are positioned by computing a weighted
average of neighboring nodes resulting in a C1 surface.
Their facet-based surface representation is employed with a
3D advancing front triangle meshing algorithm. Frey and
George [10] also provide details on the use of triangle
Bézier patches for modeling surfaces of prescribed
continuity for application to finite element mesh
generation. Additionally, Frey [11], and Laug and
Borouchaki [12] address issues related to parametric space
mesh generation on facet-based surfaces. The current
effort, in contrast addresses integration of a facet-based
system as a geometry kernel for 3D surface mesh
generation.

The current work extends the previous work of the authors
[13] where a method for decomposing a finite element
model to generate a complete geometric model for mesh
generation was proposed. Sets of facets were generated
and grouped together to form surfaces based upon user
defined feature angle criteria and boundary condition data.
The current work assumes that facets have been adequately
grouped into topological surfaces as described in [13].

2.2 Surface Meshing

Surface meshing algorithms may be characterized as either
parametric or 3D. A parametric surface-meshing algorithm
creates the mesh in a two-dimensional space, mapping the
final nodal coordinates to three dimensions only as a final
step. Many examples of parametric surface meshing exist
in the literature [14,15,16]. Fundamental to parametric
meshing is a global 2D parametric (u,v) representation for
the entire surface. NURBS representations provided by
CAD modelers conveniently provide this information. For
facetted models, however, surface parameterizations are not
easy to come by and are a topic of active research [17,18].

3D meshing algorithms, on the other hand, do not require
an underlying parameterization. Rather than mapping
between 2D and 3D spaces, the meshing algorithm is
performed completely within the 3D space. The current
work restricts its application to 3D meshing algorithms,
leaving parametric meshing to subsequent research.
Paving [2] and 3D advancing front triangle meshing [19]
are examples of 3D meshing algorithms. These algorithms
begin with an outer loop of mesh edges and begin placing
elements on the surface marching systematically from the
boundary towards the interior. Fundamental to these
algorithms is the evaluation of the underlying surface. The
closest point or projection routine combined with surface
normal evaluations at a point are the main requirements
these algorithms demand of the geometry kernel. While in
most cases these functions are standard API calls available
from a NURBS-based geometry system, they must be
defined for a facet-based system. This work proposes
several techniques for defining these routines for facet-
based representations.

2.4 G0 Surfaces

The facet representation can be characterized by the
geometric continuity for which the composite set of
triangles comprising a surface will maintain.

For purposes of this work, we will not consider parametric
continuity (ie. C0, C1, …), as 3D surface meshing schemes
will be employed. Instead G0 and G1 continuous
representations will be considered. Farin [20] details the
requirements of continuity across surface patches
composed of Bézier patches. Kashyap [21] addresses
higher order continuity between triangle patches.

A surface maintaining G0 continuity guarantees only that
that the facet edges meet edge-to-edge, without gaps. In
this case, characteristic facets and ridges between triangles
may be evident. In many cases, G0 is sufficient to
adequately characterize the surface for mesh generation.
Planar surfaces, surfaces with large curvature or surfaces



with sufficiently dense triangles to represent curvature, may
not require more than what a G0 facet representation will
provide. Since higher order representations will inevitably
be more expensive, the option to provide for G0

representations should be supplied in a facet-based
geometry kernel for mesh generation.

Triangles may be conveniently parameterized using
Barycentric coordinates. Instead of the standard u,v
parameterization of tensor product surfaces, three
parameters, u,v,w, are used, where u+v+w=1 and u,v,w ≥0.
Figure 1 shows the characteristic parametric domain for
any triangle.

Figure 1. Barycentric coordinate system defined
on a triangle.

Using Barycentric coordinates (u,v,w) any point X in the
domain may be defined as:

0 1 2( , , )u v w u v w= + +X P P P (1)

where P0, P1, P2 are the vertices of the triangle. In a similar
manner, the normal at point X can be approximated as:

0 1 2( , , )X u v w u v w= + +N N N N (2)

where N0, N1, N2 are the approximated normals at points
P0, P1, P2 respectively.

2.2 G1 Surfaces

It may be necessary to provide a smooth approximation to
the surface. To do so, Bézier triangular patches may be
defined. A degree n triangular Bézier patch may be
described with the following equation:
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Pi,j,k are the control points of the triangle and Bi,j,k(u,v,w)
can be thought of as the weights at polar location i,j,k,
where i+j+k =n. Note also that equation (1) can be
thought of as a special case of equation (3) where n=1. In
this case Bijk =1 for all i,j,k.

Triangular polar values are a convenient way of
generalizing the control point indices for an arbitrary

triangle patch. For example, Figure 2 shows the polar
coordinate locations for triangle patches n=3 and n=4.

Figure 2. Polar values for triangles patches of n=3
and n=4

It has been established that the minimum order of a triangle
Bézier patch necessary to model a G1 surface is n=4 [22].
For this case, equation (3) can be written as:
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Walton [23] describes a procedure for defining Pi,j,k as a
function of the triangle vertex locations Pi {i=0..3} and
normals Ni {i=0..3}. The Walton patch is central to the
techniques proposed in the present work. How it is used
within the context of a practical geometry kernel for mesh
generation is the additional contribution proposed by the
current research and development effort. Definition and
implementation of the Walton patch is outlined in section 5.

Similarly, smooth normals for the quartic patch at X(u,v,w)
may be computed by evaluating a cubic Bézier patch.
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Assuming the normals at N3,0,0, N0,3,0, and N0,0,3 are the
computed normals at the triangle vertices N0, N1 and N2

respectively, a procedure for computing the remaining Ni,j,k

by extending the work of Walton is introduced in section 5.

3. DATA REPRESENTATION

As stated in the Introduction, facet-based surface
construction is employed in a variety of contexts. These
types of surfaces can be used to support mesh generation on
facet-based models. The method used to store and evaluate
the facet data can vary according to the source of those
data. For example, in the context of large-deformation
FEA, it is important to maintain links between the original
mesh and the corresponding facets used to model the
surface. Also, for these analyses, duplication and updating
of facet data can be problematic because of memory
limitations commonly found in parallel computing



environments and because position and topology of facets
may be changing. Facets originating from STL or graphics
files may not have those limitations. In contrast, the
functions needed to support mesh generation do not depend
on the source of the facets being evaluated, and therefore
should look the same regardless of the facet representation.
We accomplish both these goals utilizing inherited classes
in C++ for our facet data structure.

We define a generic FacetEntity class, from which generic
Point, FacetEdge and Facet classes are derived. Contained
in these classes is the normal and control point data
necessary to describe the G1 surface approximation. A
simplified representation of the data contained in these
classes is illustrated in Figure 3.

class FacetEntity {}

class Facet : public FacetEntity {
Vector3D *controlPoints;
Vector3D normal;
Box boundingBox;
virtual get_points() = 0;

}

class FacetEdge : public FacetEntity {
Vector3D *controlPoints;
Boolean isFeature;
virtual get_adjacent_facets() = 0;

}

class Point : public FacetEntity {
List<PointNormal *> normalList;
virtual get_location() = 0;
virtual get_adjacent_facets() = 0;

}

class PointNormal (
Vector3D normal;
int surfaceID;

}

Figure 3. Simplified C++ classes used for defining
facet representation

These classes also support typical functionality like point
location and point-edge-facet adjacency. These functions
are defined as virtual functions to allow representation-
specific versions to be implemented. An example
inheritance tree for the facet representation is illustrated in
Figure 4.

The actual implementation of the functions described above
is done in classes derived from Facet, FacetEdge and Point.
We describe here two specific implementations: one that
stores the facet data in the actual derived classes, and one
that references those data from an analysis application. In
the first child class, PointData, the point data (i.e.
coordinates and adjacency information) are stored in the
class and are used directly to implement the required
functions. This is illustrated in Figure 4 in the box marked
A. The second implementation example, in the FEAPoint
class, does not store the point data in the class; those data
are retrieved from the mesh objects in the FEA code, to
which the FEAPoint object keeps a pointer. Box B in
Figure 4 illustrates this case. Implementations of the
FacetEdge and Facet classes are similar to those for Point.

Figure 4. Inheritance tree for object oriented facet
representation

The proposed object oriented implementation also leaves
open the possibility for additional code reuse. Other
applications need only supply the required topology
information for the facets in order to take advantage of the
proposed surface representation and evaluation.

4. FACET INITIALIZATION AND EVALUATION

The following procedure outlines the proposed process for
initializing facet-based surfaces for use as a geometry
kernel for 3D mesh generation. Figure 3 illustrates the
basic data needed to sufficiently describe the smooth
surface. Control point and normal data necessary to
compute equations (5) and (6) are necessary. Depending
on the speed vs memory requirements of the application,
this data may be precomputed and stored with the facet
entities or may be computed only as evaluations are
required. For the mesh generation applications used with
this work, it was found that pre-computing the normal and
control point data was more efficient.

It should be noted that curves and surfaces with zero
curvature can be accurately modeled with a G0 surface
representation. Given that many surfaces used to model
machined parts have flat surfaces, it is worthwhile to check
for this condition and only initialize those with any
curvature. Furthermore, it may be worthwhile to perform an
initial decimation of the facets comprising the surface to
reduce memory requirements and increase the performance
of the closest_point operation discussed later.

The initialization procedure begins first with the
approximation of the normals at the Points. The normals
are then used as input to compute the control points on the
FacetEdges. Finally, the control point data on the Facets is
computed using the FacetEdge control points. Details for
initializing each of these data objects is now described.

4.1 Points

The definition of Bézier triangle facets requires normals to
be provided or approximated at each of the facet vertices.
If normals are available from an external source, such as
those provided through an STL format, these should ideally



be used. If they are not provided, it is necessary to
approximate them. Reference [13] describes the method
used in the current work, defining the normal, NP at a point
as the weighted average of the adjacent facets, Nj, where
the weight, wj is the normalized facet angle at the point.
Equations (7), (8) and Figure 5 describe this procedure.
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Figure 5. Definition of a normal at point P

At feature breaks, it is necessary to compute multiple
normals at a point, where the normal is the weighted
average of only the facet normals defined on a given
surface. Figure 3 describes the Point class as containing a
list of PointNormal objects. The PointNormal object
contains both the computed normal and a reference to the
surface to which it applies. It should be emphasized that
this extra information is only required at breaks or surface
boundaries to distinguish surface features and is only
allocated at the Points as needed to ensure minimal
additional memory overhead.

4.2 Facet Edges

To completely represent the quartic Bézier facet edge, five
control points are needed. In addition to serving as the
control points for the boundary curves, The control points
on the FacetEdges are utilized in the definition of the
triangle Bézier patches (discussed later) that are
immediately adjacent the FacetEdge. Adjacency
information provided by the data representation described
in the previous section is necessary to keep track of this
data and utilize it as necessary.

Since we may utilize the Point locations for the ends of the
Bézier curve, the remaining three control points, Pi, j

{j=1..3} may be stored with the FacetEdge. In practice, the
required input to compute Pi,j (Figure 6) are the FacetEdge
endpoints Pi, Pi+1, the surface normals, Ni, Ni+1 and the
curve tangent vectors, Ti, Ti+1 at the same points.

Figure 6. FacetEdge required input to compute
control points Pi,j

It is assumed that point Pi and Pi+1 are provided. The
previous section addresses approximation of normals Ni,
Ni+1. In order to maintain G0 continuity between adjacent
facet-based surfaces, it is necessary to approximate the
curve tangents, Ti, Ti+1. For edges on the interior of the
surface where G1 continuity is to be maintained, it is
sufficient to define both Ti and Ti+1 as the direction of the
FacetEdge
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For edges marked as Features, using equation (9) may
result in gaps between the facets as illustrated in Figure 7.
In this example a cylinder has been represented with a
coarse set of facets. Facet A and Facet B are on different
surfaces, but are required to meet at edge PiPi+1. Using
only the facet normals and the tangents of equation (9),
gaps between the facets would result in different Pi,j for the
same edge depending upon which facet is used for the
computation. This is illustrated in Figure 7 by (Pi,j)A and
(Pi,j)B computed from Facet A and Facet B respectively.
Instead, the following logic is employed:
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whereθ is the user defined feature angle, and vectors
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Figure 7. Cylinder represented by coarse facets.
Tangent vectors required to maintain G0

continuity between surfaces.

Figure 7 illustrates the location of point (Pi)prev and
(Pi+1)next. These are the previous and next vertices on
adjacent FacetEdges to Pi and Pi+1 respectively that are on a
feature edge. Note that multiple feature edges may meet at
a single point P. In this case, the appropriate selection of
(Pi)prev and (Pi+1)next must be determined from local
topology by traversing FacetEdges in order at Pi and Pi+1 to
locate the next FacetEdge marked as a feature.

Armed with the six vectors described in Figure 6, we are
now prepared to compute the three control points Pi,j

{j=0..3}. The procedure used is defined in Walton and
Meeks [23], but is illustrated here for clarity. Note the
modification to the Walton patch to accommodate the
tangent vectors defined in equations (10) and (11) at feature
edges.
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In the current work, Pi,j from equations (23) to (25) are
stored with the FacetEdge. To further ensure continuity
between facets on adjoining surfaces, it is necessary to
average the final locations Pi,j computed with respect to
each adjoining facet.

Since the objective of this exercise is to provide a means to
evaluate equation (5), the following correspondence exists
between the points Pi,j,k defined with polar indices, Pi and
Pi,j.

4,0,0 0 0,3,1 0,1 1,0,3 1,1 3,1,0 2,1
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4.3 Facets

Making use of the control points on the FacetEdges, the
quartic Bézier patch, control points P1,1,2, P2,1,1 and P1,2,1 on
the interior of the facet can now be defined. The locations
of these points are critical to describing G1 continuity
between adjoining patches. Walton and Meeks propose a
method, whereby two candidate locations for interior
control points are defined for each FacetEdge, resulting in
six vectors Gi,j {i=0,1,2; j=0,1}. Final locations for interior
control points P1,1,2, P2,1,1 and P1,2,1 are a function of the
evaluated (u,v,w) parameters and Gi,j. Once again the
procedure outlined by Walton and Meeks is described here
for clarity.

For each FacetEdge, i, in the Facet, compute the following:
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The two control points Gi,0, Gi,1 with respect to FacetEdge i
may now be defined as:
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In practice, the six control points, Gi,j are stored with the
Facet object. When the facet is to be evaluated, interior
control points P1,1,2, P2,1,1 and P1,2,1 may be uniquely
evaluated as:
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Finally, in order to evaluate the Bézier facet at parameter
(u,v,w), equation (5) may be employed by using the control
points defined in equation (26) and equations (41) to (43).
Care must be taken to extract the appropriate control points
in the correct order from the FacetEdges and Points so that
control points Pi,j,k are appropriately assigned.

4.4 Normals

Surface normals may be computed by evaluating the cubic
Bézier of equation (6). Once again the normals computed
at the facet vertices N0, N1, N2 can be used for the control
points N3,0,0, N0,3,0 and N0,0,3 respectively. Left to be
computed are the seven remaining control points: two per
edge and one at the center of the triangle.

As with the calculation of the quartic control points,
depending upon the speed vs. memory requirements of the
application, the normals for the cubic patch of equation (6)
may be precomputed and stored, or they may be computed

only as needed. If they are precomputed, Two additional
control points per FacetEdge, Ni,0 and Ni,1 would be
computed and stored. In this case we may take advantage
of the cross edge derivative information computed in
equations (30) and (31).
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The correspondence between the control points Ni,j,k in
equation (6) and the Ni,j at the FacetEdges defined in
equations (44) and (45) is as follows:

3,0,0 0 0,2,1 0,0 1,0,2 1,0 2,1,0 2,0

0,3,0 1 0,1,2 0,1 2,0,1 1,1 1,2,0 2,1

0,0,3 2

= = = =
= = = =
=

N N N N N N N N

N N N N N N N N

N N

(46)

Remaining to be computed is the internal control point of
the cubic Bézier. This may be computed when the facet is
evaluated using the interior control points from the quartic
Bézier as follows:

( ) ( )
( ) ( )
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1,1,1

1,2,1 2,1,1 1,1,2 2,1,1

− × −
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− × −

P P P P
N

P P P P
(47)

Figure 8. Quartic control point grid showing
relationship to cubic grid of normals.

In practice, rather than storing Ni,j for each FacetEdge, Ni,j

may be computed only as needed. Instead of regenerating
the cross derivatives Di,j for equations (44) and (45), the
normals Ni,j can be derived directly from the control points
of the quartic Bézier in a similar manner to equation (47).
Figure 8 shows the relationship between the quartic control
point grid and the normals required for the cubic Bézier
patch. The normal of a local triangle in the quartic Bézier
control grid should provide a sufficient approximation to
the cubic Bézier control points. Therefore, the control
points for the cubic Bézier can be determined as follows:
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4.5 FacetEdge Evaluation

3D mesh generation algorithms frequently require the
curves to be evaluated. Since we have defined our curves
to be a set of FacetEdges, curve evaluation can utilize the
control point information stored with the FacetEdge. One
approach is to utilize equation (5), setting one of the
parameters (u,v,w) to zero. This method however requires
computing unnecessary control point information on the
facet. Instead, the standard Bézier equation may be used:
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For the quartic case, evaluation of the FacetEdge, i, Bézier
curve at parameter t { }0 1t≤ ≤ using the facet vertices P0,

P1 and edge control points Pi,j (equations (23) to (25)) may
be defined as:

4 3
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The tangent vector along the edge may also be computed
by evaluating a cubic Bézier.

3 2 2 3
,1 ,2 1( ) (1 ) 3 (1 ) 3 (1 )i i i it t t t t t t+= − + − + − +T T T T T (52)

where Ti and Ti+1 are defined by equations (9) to (11) or
more generally Ti,j may be defined as:

{ }, , 1 , 0...3i j i j i j j+= − =T P P (53)

5. CLOSEST POINT

The most common API request for 3D mesh generation
algorithms is the closest point, or surface projection: given
an arbitrary point in space, X, find the closest point on the
surface Xs. Since this procedure may be called thousands
of times to mesh a single surface, an efficient method is
sought to perform this operation.

The closest point calculation involves two main steps. The
first task is selection of a small list of facets close to X
from which to evaluate. Once this is determined a
minimization procedure is employed for finding the closest
point on the facet and the distance from X to each facet in
the list is computed. The facet whose computed distance is
smallest is selected as Xs.

5.1 Closest Facet

An obvious solution to the closest facet problem is to
project point X to each of the facets in the surface and

select the point that is the least distance from X. Since this
would be very inefficient, the objective of the closest facet
procedure is to minimize the number of facets that must
eventually be evaluated. Various spatial searching
techniques are available in the literature [24]. The
proposed method involves a combination of two methods.

5.1.1 Bounding Box Elimination Method
The first method is a simple bounding box elimination
method. In this case, the axis-aligned bounding box of
each facet, Bf is evaluated and stored with the Facet object
(see Figure 3). This may be done once for each facet upon
initialization of the facet surface. Care should be taken to
utilize the Bézier control points in the bounding box
calculation. Upon projection of point X, a trial axis-aligned
bounding box, BX is defined around X such that (BX)min =
X-δ and (BX)max = X+δ. δ is a small scalar distance
representative of the model size. In practice, the diagonal
of the model bounding box scaled by 10-3 is used as the
initial value of δ.

Facets selected to evaluate are only those where the
bounding box Bf overlaps with BX. For this method, every
facet on the surface must be checked and their bounding
boxes verified for overlap. If after checking every facet, no
bounding box Bf is found to overlap with BX, δ is scaled by
2, BX is recomputed and the facets checked again. This
procedure continues, scaling δ each time, until at least one
Bf is found to overlap with BX. For 3D mesh generation
algorithms, the point to be projected is generally close to
the surface. As a result, in most cases, not more than a
single pass through the facets is required. Care should be
taken in choosing an initial δ, as choosing δ too small could
result in multiple iterations through the facet list before
encountering any overlap. Choosing δ too large, on the
other hand, may result in too many facets being selected to
evaluate. This procedure can become expensive as the
number of facets increase. For this reason an alternate
spatial search algorithm is utilized.

5.1.2 R-Tree Spatial Search
The dynamic index structure, R-Tree [25], is used to find
only the closest facets to evaluate. The R-Tree structure
was selected because of the multi-dimensional search
structure of the algorithm. Most spatial search algorithms
such as octrees and kd-trees [26], are typically only useful
for storing and retrieving k dimensional data. For instance,
problems, which involve finding the closest 3D point, can
be readily solved by octrees. Facet data, however, if
transformed into a single point would require nine
dimensional octrees (3 dimensions for each x-y-z location
of each point). Additionally, determining intersections in
nine dimensional spaces are often error prone. The R-Tree
defined by Guttman is specifically designed to handle
mutli-dimensional search spaces efficiently. It is a height-
balanced tree with its leaf nodes containing pointers to
Facet objects. The structure is designed so that only a
small number of leaf nodes are visited for any search
operation, however the worst case of the algorithm is not
guaranteed to be faster than the traditional n2 algorithm.
The balancing algorithm of the tree is such that this



extreme case will be rare, and in practice the tree appears to
run at about O(n) where n is the number of facets.

Although relatively efficient, in practice, the overhead of
generating and utilizing the additional infrastructure of the
R-Tree is not worthwhile for small numbers of facets.
Timed tests indicated that using only the bounding box
elimination method was more efficient for up to
approximately 2000 facets. Where additional facets were
needed to represent a surface, R-Tree was able to improve
performance considerably. As a result, for the current
work, R-Tree is used only when the number of facets on a
surface exceeds 2000.

5.2 Closest Point on a Facet

Locating the closest point on a facet, Fi can be performed
on the (hopefully) small list of facets determined from
either the bounding box elimination method or R-Tree
search. For G0 surfaces, this is relatively straightforward,
as illustrated by the following procedure

5.2.1 Projection to a Linear Facet
1. Determine the closest point, Xp to the plane

defined by Fi.

0F Fd = ⋅ − ⋅N X N P (54)

p Fd= −X X N (55)

where NF is the facet normal and P0 is a vertex on
Fi.

2. Determine if Xp is inside Fi by computing its
barycentric coordinates with respect to Fi.
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3. If all parameters u,v,w > 0, then Xs = Xp

4. Otherwise Xp is outside Fi. Find the closest point
to one of the facet edges or facet vertices.

Let Pi {i=0,1,2} be the vertex locations on Fi,
then project Xp to the closest edge based on the
following:
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5.1.2 Projection to a triangular Bézier Patch
To compute the closest point, Xs to the Bézier patch a
minimization algorithm must be employed. Numerical
minimization techniques are standard in the literature [27]
but are not common for this specific application. For
example, Ristic [28] suggests using the Downhill Simplex
Method for finding the closest point to a tensor product
NURBS patch with application to the NURBS registration
problem. Rypl and Bittnar [9] also outline a method for
projecting a point to a target triangle patch. In this case, we
present a line minimization technique tuned for use with
the triangle Bézier patch. This is utilized for purposes of
mesh generation since in general the initial guess will be an
excellent approximation to the actual point on the surface.
We attempt to minimize the distance d to the triangle patch
as:
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where ( , , )X X Xx y zX is the point to be projected and the

location ( ( , , ), ( , , ), ( , , ))S x u v w y u v w z u v w=X is a point on

the surface which is a function of the area coordinates A
(u,v,w).

Figure 9. Projection of a point to the Bézier patch

Figure 9 illustrates the procedure used for projecting a
point X to the triangle Bezier patch. The point is first
projected to the facet Fi to determine an initial parametric
guess Aguess at location Xp on the facet. Xp is defined by
equation (55) and Aguess from equations (56), (57) and (58).



Given this information, the procedure progresses as
follows:

1. First check if X is within tolerance, tol of one of
the facet vertices. Define a convergence tolerance
relative to the size of facet Fi. For example

3(F ) 10itol area −≈ ×

IF ( ) THENi s itol− < =X P X P , RETURN.

2. Check if Aguess is outside the parametric domain
of the patch and move it to the parametric
boundary.

Let A = Aguess

FOR i=1,2,3; j=(i+1)%3; k=(i+2)%3
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3. Let ( )A = ΦX A be the evaluation of the Bézier

patch at parametric location, A (see equation (5))

( )A = ΦX A (67)

,move A move moved= − =V X X V (68)

4. Keep track of the best area coordinate, (Abest) the
location at Abest, (Xbest) and its distance from X,
(dbest). Initialize with the values computed in (67)
and (68). Also keep track of the number of
iterations niter.

, ,best best A best moved d= = =A A X X (69)

0niter = (70)

5. Begin Iteration Loop. Check for convergence
and ensure the maximum number of iterations,
IMAX has not been exceeded.

IF (dmove < tol OR niter > IMAX) THEN

,s best S best= =X X A A

RETURN

6. Parameters u,v,w are not linearly independent
(u+v+w=1). Choose a system, of two variables to
optimize.

FOR i=0,1,2; j=(i+1)%3; k=(i+2)%3

IF (A[i]>A[j] AND A[i]>A[k]) THEN

, ,j k iη ξ ψ= = = (71)

7. Define area coordinates, ηA and ξA perturbed a

small distance δ from A. in directionsη and

ξ respectively.
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8. Evaluate at ηA and ξA and approximate

derivative vectors ηV and ξV in directions

η and ξ .

( ) Aη
η δ

Φ −
=

A X
V (74)

( ) Aξ
ξ δ

Φ −
=

A X
V (75)

9. Compute a search direction tangent to the Bezier
patch

ηξ η ξ= ×N V V (76)

( )move moveηξ ηξ= × ×V N V N (77)

10. Project to 2D coordinate plane based on
magnitude of ηξN

FOR i=1,2,3; j=(i+1)%3; k=(i+2)%3

IF ( [ ] [ ]i jηξ ηξ>N N AND

[ ] [ ]i kηξ ηξ>N N ) THEN

I=j, J=k

Solve 2 2× linear equation in I, J system to determine the
move distance ,d dη ξ in the parameter space.

[I] [I] [I] [I]

[J] [J] [J] [J]
,

[I] [I] [I] [I]

[I] [J] [I] [J]

move move

move moved d

ξ η

ξ η
η ξ

η ξ η ξ

η ξ η ξ

= =
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(78)

11. Compute the new trial area coordinate A

[ ] [ ] dηη η= +A A (79)

[ ] [ ] dξξ ξ= +A A (80)

[ ] 1 [ ] [ ]ψ η ξ= − −A A A (81)

12. Make sure A remains inside the patch. Use
equation (66)

13. Evaluate XA at A and set up for next iteration.
Keep track of the best evaluated location so far.



last A=X X (82)

( )A = ΦX A (83)

,move A last move moved= − =V X X V (84)

X Ad = −X X (85)

IF (dX < dbest) THEN

, ,best X best best Ad d= = =A A X X (86)

14. Increment the iteration count and return to
beginning of loop.

niter = niter+1

GOTO 5

5.3 Performance

In order to get a rough idea of performance for the
closest_point implementation, models of varying size were
tested and their results described in Table 1. Test models
are shown in Figure 10 to Figure 12.

Figure 10. Cylinder Model (48 facets)

Figure 11. Diverging Corners Model (1622 facets)

Figure 12. FEA Surface Model (15,599 facets)

Table 1. Comparison of Performance of closest
point performance. (evaluations per CPU second).

For these cases, the closest_point routine was instrumented
to accumulate CPU time only while in that function while
meshing the surfaces shown. The total CPU time taken in
the closest_point routine dvided by the number of calls to
the routine is reported in Table 1. The table reports cases
both with and without the use of the R-Tree spatial
searching as described in the previous section. Results
illustrate severe deterioration in performance for surfaces
with many facets when no spatial searching is used (O(n2)).
With R-Tree, the performance deteriorates, but at a much
more acceptable rate (O(nlogn)). The results also illustrate
that for surfaces containing fewer facets, the overhead of
using the R-Tree was more time consuming than was
warranted. As a result, the R-Tree is only used where the
number of facets exceeds 2000.

Also illustrated in Table 1 is the comparison of using only
the linear facet representation vs. using the Bézier
combined with the minimization scheme described in the
previous section. Although there is some performance hit
when using the Bezier representation, the overall slow-
down is not significant.

In order to put these results into perspective with a standard
NURBS-based geometry kernel, the ACIS geometry kernel
was instrumented and a similar test performed by meshing
a typical CAD model. In this case, the time reported was
only that required by the ACIS third party library to return
the requested closest point on the surface. The average
number of evaluations per CPU second was 990. This is
comparable to the linear facet representation of the cylinder
model of Figure 10.

It is clear from these results that a significant amount of
time is taken to locate the appropriate facet(s) to evaluate.
As the number of facets increase, the performance can
deteriorate substantially. This justifies the use of geometry
decomposition algorithms to break the surface into smaller,
logical topological surfaces. It also justified the further
improvement of efficient spatial searching techniques.

6. EXAMPLES

To illustrate the viability of the proposed facet-based
surface representation a limited number of test cases are
reported here. The first example illustrates the overall
process used to define the facet representation. Figure 13
shows the initial facetted representation. A feature angle of
100 degrees was used to ensure three distinct surfaces
would be generated. Once the appropriate surface topology
is computed, the appropriate normals at the facet vertices



are computed (Figure 13(a)). Note that multiple normals
may be computed at a single vertex..

(a)
(b)

Figure 13. (a) Coarse faceting of a cylinder. (b)
Computed normals at facet vertices.

Once normals are computed, the control points are
computed on each FacetEdge and Facet. Figure 14 (a)
shows the control point grids for each of the facets. The
normal information can also be computed at this time as
show in Figure 14 (b). Otherwise, the normals may be
computed only as needed.

(a)
(b)

Figure 14. (a) Bezier control point grid from Figure
13. (b) Computed normals at the control points

Figure 15. Facetted model meshed using paving,
mapping and sweeping mesh generation

algorithms

Having set up the facetted surface representation, the model
is ready to be meshed. Figure 15 shows an example mesh
generated on the geometry. In this case, the paving [2]
algorithm is used to mesh the cylinder caps and the sub-
mapping algorithm is used to mesh the sides. The interior
hexahedral mesh is generated using the sweeping

algorithm. Each of these mesh generation algorithms
utilize the facetted surface described in this work.

It should be noted that the resulting node locations on the
cylindrical surface described by the facetted surface
representation are within tolerance of reproducing the
shape of an exact cylinder.

The next example (Figure 16) is a contrived model
intended to illustrate the use of the facet-based surface
representation within an H-adaptive environment. In this
case, facets representing two concentric spheres are
defined. The initial mesh is defined by only quadrilateral
elements, which have been split to form facets. The FEA
analysis drives the adaptivity so that the quadrilateral
elements are uniformly refined. In this example 3 iterations
were performed resulting in 64 quadrilaterals for every
initial quad on the surface. New nodes were projected to
the surface defined by the Bézier facetted-surface
representation. The result shown in Figure 16 (b), shows
the resulting refined surface mesh. Once again, the
resulting node locations of the refined model generated
only from the smooth facet representation are within
tolerance of an exact sphere.

(a) (b)

Figure 16. (a) Coarse faceting of concentric
spheres (b) FEA mesh after 3 iterations of H-

Adaptivity

Figure 17. shows an example of the use of the proposed
facet-based surface representation to improve the resolution
of small features within an existing FEA model. Figure 17
(a) shows the initial facetted representation of the model.
In this case, the model has small features that are not
sufficiently resolved for purposes of the required analysis.
After setting appropriate mesh sizing constraints on the
model, the surfaces are remeshed using the paving
algorithm with results shown in Figure 17 (b). Note the
improved resolution of the interface curves between
adjoining surfaces. The bold lines illustrate the difference
between the initial linear representation and the final Bézier
representation of the curves.

One final example (Figure 18) illustrates the use of the
facet-based surface representation to convert a model
meshed with triangles into a different element type or to
modify its resolution by remeshing. In some cases, when
only the FEA mesh is available, to perform design studies,
it may be required to change the element type or mesh
resolution. This can be troublesome when there is no
underlying geometry representation. In this example, the
triangle surface mesh Figure 18 (a) is used as input to the



facet-based surface representation and Bézier patches are
generated. The paving algorithm is once again used to mesh
over the original triangle surface mesh. Figure 18 (b) and
Figure 18 (c) show the triangle surface mesh remeshed with
different resolutions of a quadrilateral mesh. In (b) the
mesh is coarser than the original mesh and (c), the mesh is
finer.

(a)

(b)

Figure 17. (a) Facet-based model. Enlarged
section shows small features insufficiently

represented by the facets. (b) Paving algorithm
applied to the facet-based surface improves

resolution.

7. CONCLUSION

Facet-based surface representations have become an
important tool for simulation. Existing mesh generation
tools can utilize facet-based surfaces in a similar manner to
NURBS-based surfaces through a common API. We have
proposed a variety of technologies necessary to
successfully implement curve and surface representations
specifically for use within an existing mesh generation
toolkit.

(a)

(b)

(c)

Figure 18. (a) Initial triangle mesh. (b) remeshed
using Paving. (c) at finer resolution

An object oriented facet representation has been proposed
that permits flexibility and reuse within different
applications. Both G0 and G1 facet representations have
been presented, allowing the user to trade off between
accuracy and efficiency of the resulting mesh. The Walton
patch was proposed as the basis for the G1 facet



representation, and its implementation within the context of
a geometry kernel for 3D mesh generation was presented.

Additionally, techniques for evaluation of the facet
representation during the mesh process were described. It
was found that in cases with small numbers of facets, that
the NURBS-based and facet-based representations were
equivalent. However, for significant numbers of facets, the
performance of the facet-based representation was less
efficient. A spatial searching technique, R-Tree, was used
to improve performance for significant numbers of facets.

The proposed research has been implemented within the
context of the Cubit mesh generation software toolkit [1]
and is currently utilized by a wide variety of users at the U.
S. National Laboratories.

REFERENCES

[1] CUBIT Mesh Generation Tool Suite: Automatic
Unstructured Hex, Tet Quad and Tri Meshing and
Solid Model Geometry Preparation. Web Site:
http://endo.sandia.gov/cubit (2002)

[2] Blacker, Ted D., "Paving: A New Approach To
Automated Quadrilateral Mesh Generation",
International Journal For Numerical Methods in
Engineering, No. 32, pp.811-847, (1991)

[3] Roger J Cass, Steven E. Benzley, Ray J. Meyers and
Ted D. Blacker. “Generalized 3-D Paving: An
Automated Quadrilateral Surface Mesh Generation
Algorithm”, International Journal for Numerical
Methods in Engineering, No. 39, 1475-1489 (1996)

[4] Knupp, Patrick M., "Next-Generation Sweep Tool: A
Method For Generating All-Hex Meshes On Two-
And-One-Half Dimensional Geometries",
Proceedings, 7th International Meshing Roundtable,
pp.505-513, October 1998

[5] White, David R. and Timothy J. Tautges, "Automatic
scheme selection for toolkit hex meshing",
International Journal for Numerical Methods in
Engineering, Vol 49, No. 1, pp.127-144, (2000)

[6] Borden, Michael, Steven Benzley, Scott A. Mitchell,
David R. White and Ray Meyers, "The Cleave and
Fill Tool: An All-Hexahedral Refinement Algorithm
for Swept Meshes", Proceedings, 9th International
Meshing Roundtable, pp.69-76, October 2000

[7] "The Common Geometry Module (CGM): A
Generic, Extensible Geometry Interface",
Proceedings, 9th International Meshing Roundtable,
Sandia National Laboratories, pp.337-348, October
2000

[8] 3D ACIS Modeler, Spatial Technologies, Web Site:
http://www.spatial.com/products/3D/modeling/ACIS.
html, (2002)

[9] Daniel Rypl and Zden ĕk Bittnar, “Discretizatoion of
3D Surfaces Reconstructed by Interpolation
Subdivision,” 7th Conference on Numerical Grid

Generation in Computational Field Simulations, pp.
679-688 (2000)

[10] Pascal J. Frey and Paul-Louis George, “Mesh
Generation: Application to Finite Elements,” Hermes
Science Publishing, Chapter 13.4, pp. 445-448
(2000)

[11] Pascal J. Frey, “About Surface Remeshing”,
Proceedings, 9th International Meshing Roundtable,
pp. 123-126 (2000)

[12] P. Laug and H. Borouchaki, “Adaptive Parametric
Surface Meshing Based on Discrete Derivatives,” 7th

Conference on Numerical Grid Generation in
Computational Field Simulations, pp. 719-728
(2000)

[13] Steven J. Owen and David R. White, “Mesh-based
geometry: A systematic approach to constructing
geometry from a finite element mesh”, Proceedings,
10th International Meshing Roundtable, pp. 83-96
(2001)

[14] Tristano, Joseph R., Steven J. Owen, and Scott A.
Canann, "Advancing Front Surface Mesh Generation
in Parametric Space Using a Riemannian Surface
Definition", 7th International Meshing Roundtable,
pp.429-445, October 1998

[15] George P. L., and H. Borouchaki, Delaunay
Triangulation and Meshing Application to Finite
Elements, Editions HERMES, Paris, 1998

[16] Cuilière, J. C., An adaptive method for the automatic
triangulation of 3D parametric surfaces, Computer
Aided Design, Vol 30(2), pp.139-149, 1998

[17] Sheffer, Alla and E. de Struler, "Surface
Parameterization For Meshing by Triangulation
Flattening", Proceedings, 9th International Meshing
Roundtable, pp.161-172, October 2000

[18] Michael S. Floater, “Parametrization and Smooth
Approximation of Surface Triangulations,”
Computer Aided Geometric Design, Vol 14, pp.231-
250, 1997

[19] Lau, T.S. and S.H. Lo, "Finite Element Mesh
Generation Over Analytical Surfaces", Computers
and Structures, Elsevier Science Ltd, Vol 59, No. 2,
pp.301-309, 1996

[20] Gerald Farin, “Curves and Surfaces for CAGD”, 5th

Ed. Academic Press (2001)

[21] Praveen Kashyap, “Geomeric interpretation of
continuity over triangular domains,” Computer Aided
Geometric Design No. 15 pp. 773-786 (1998)

[22] B. Piper, “Visually Smooth Interpolation with
Triangular Bezier Patches”, in Farin, G. (Ed.)
Geometric Modeling: Algorithms and New Trends
SIAM Philadelphia (1987) pp 221-233

[23] D. J. Walton and D.S. Meek, “A triangular G1 patch
from boundary curves”, Computer-Aided Design,
Vol 28, No. 2, pp. 113-123 (1996)



[24] J. L. Bentley and J. H. Friedman, “Data structures for
Range Searching,” Computing Surveys No. 11, 4 pp.
397-409 (1979)

[25] Antonin Guttman, “R-Trees, A Dynamic Index
structure for spatial Searching,” SIGMOD
Conference 1984. pp. 47-57

[26] J. L. Bentley, “Multidimensional Binary Search
Trees used for Associative Searching,”
Communications of the ACM 18, 9 pp. 509-517
(1975)

[27] Willian H. Press et. al., “Numerical Recipes in C:
The Art of Scientific Computing,” Cambridge
University Press, Chapter 10. pp. 394-455 (1995)

[28] Mihailo Ristic and Djordje Brujic, “Efficient
registration of NURBS geometry,” Image and Vision
Computing, No 15 pp. 925-935 (1997)


