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ABSTRACT

In this paper, we show how to compute an orthogonal mesh that strictly conforms to a given simplicial complex SC

in R?. This result will be applied to improve the treatment of wells in oil reservoir simulation. The trend for this

problem is to use hybrid meshes obtained by inserting radial well meshes in a structured reservoir grid. Our work can

be used to generate a transition mesh connecting the reservoir mesh to well meshes and preserving strict conformity.
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1. INTRODUCTION

This work is motivated by a meshing problem arising
in the field of oil reservoir simulation. Efficient tools
can accurately determine the complex geological
architecture of a reservoir. A spatial discretization
of this structure is then required in order to simulate
and forecast fluid flow processes through numerical
simulations. Typically the reservoir field is described
through a corner point geometry (CPG) grid, which
is basically a structured hexahedral grid slightly dis-
torded to fit the mesh to geological features. Around
wells, flows are known to have a radial symetry. Thus,
in those areas a structured radial mesh is suitable to
increase the accuracy of flux computations. Finally,
to get a global mesh, these different meshes have to
be connected through unstructured transition meshes,
leading to hybrid meshes. This paper deals with the
generation of transition meshes.

The numerical schemes used during the simulation
processes impose conditions on the transition meshes.
A transition mesh is required to be a polyhedral mesh
with convex cells and to preserve strict conformity,
which means that any two adjacent cells share a

unique facet. Moreover, finite volume computations
require the mesh to be an orthogonal mesh, which
means that there is an embedding of the dual complex
such that each face is orthogonal to its dual face.

Treatment of wells is a well known problem in oil
reservoir simulation [1, 2]. Different methods have
been studied to introduce a well in a reservoir mesh.
The first method consists in locally refining a coarse
cartesian grid into a finer local grid around the well
[3]. This widely used method holds for structured
grids, leads to non conforming meshes and increases
broadly the number of cells. Another way to integrate
well meshes into a reservoir mesh is to generate a
global unstructured mesh [4]. As we would like to
keep a kind of structure as much a possible, this
solution is not held. As a compromise, hybrid meshes
have been studied and two main approaches have
been proposed. The first one refines locally one or
more cells of the cartesian grid with an arbitrarily
fine curvilinear orthogonal mesh that defines a radial
mesh around the well [5]. This method suffers from
its lack of flexibility. The cartesian grid does not
correctly represent the geology of the reservoir and
the locations where to insert the wells are restricted.



The second approach can deal with faults, as well
as with vertical and horizontal wells. The idea is to
connect a well mesh and the reservoir mesh, or two
blocks of the reservoir mesh along a fault, through
an unstructured mesh which is made up of pyramids,
prisms, hexahedral and tetrahedral cells [6]. This
method is more flexible than the previous one as
faults can be represented but it fails to achieve the
orthogonal property.

This paper presents an extension and a generalization
of a previous work [7]. It retains the hybrid mesh
approach and mainly proposes an original method
to generate transition meshes. In order to introduce
a well in a reservoir, some cells of the reservoir
mesh are set inactive. Their union defines a cavity
where the well mesh is placed. The transition mesh
will have to fill in the domain enclosed between the
boundary of the cavity and the boundary of the well
mesh. If the faces of these boundaries are regarded
as constraints, the problem of generating a transition
mesh amounts to generate an orthogonal mesh that
strictly conforms to these constraints. In this paper,
we consider simplicial constraining complexes in any
dimension and mainly show how an orthogonal mesh
that strictly conforms to a given simplicial complex
SC can be computed. As orthogonal meshes are
known to be strongly related to power diagrams [§],
our method heavily relies on the properties of power
diagrams and their dual regular triangulations which
have been widely studied [9, 10, 11].

Section 2. reviews some known facts about regular tri-
angulations and power diagrams. In Section 3., we de-
fine regular constrained triangulations for a constrain-
ing simplicial complex and show that finding such a tri-
angulation amounts to solve a linear problem. Then,
in Section 4., we show how an orthogonal complex
that strictly conforms to a simplicial complex SC can
be computed once a regular constrained triangulation
of SC is known. Finally, section 5. illustrates how this
result is used to generate 2D hybrid meshes for oil
reservoir simulation.

2. REGULAR TRIANGULATIONS AND
POWER DIAGRAMS

2.1 Definitions

A triangulation in R? is said to be regular if it
can be obtained as the orthogonal projection of
the lower convex hull of a polytope in R, More
precisely, let T' be a triangulation in R? whose vertices
are the points of the set P = {p1,...,pn}. The
triangulation 7' is regular if and only if there exists
aset PT = {pf,...,pt} of points in R*™ such that
point pl projects on p; and the projection of the

lower convex hull of P* is T.

Figure 1: Regular triangulations.

As a regular triangulation in R? is the projection
of the lower convex hull of a polytope in R**!, its
domain covers the convex hull of its vertices.

Let WP = {(p1,w}),.--,(pn,w2)} be a set of
weighted points where each p; is a point in R?
and each w? is a scalar called the weight of point
pi.  Alternatively, each weighted point (pi,w?) can
be regarded as a sphere in R? with center p; and
radius w;. Notice that the weight w? does not have
to be positive and that points with negative weights
can be handled as well. Points with negative weights
are regarded as imaginary spheres whose radii are
imaginary complex numbers.

Let us define the power product of two weighted
points (pi,w;) and (p;j,w) as :

((pi,w?), (ps,wi)) = (pi — ps)* — wi —wi.

Notice that if the weight w? is zero, the power product
((pi,w?), (pjsw})) = W(pi, (pj,w])) is the power of
point p; with respect to the sphere (p]-,w]z).

The power diagram PD(WP), of the set WP, is a
space partition. Each cell corresponds to a weighted
point (p;,w?) of WP and is the locus of points p in
R? whose power with respect to (pi,w?) is less than
its power with respect to any other weighted point
(pj,w?) in WP. Let Cwp(pi,w;) be the cell of (pi,w;)
in the power diagram PD(OVP).

Cwr(pi,wi)={p € R' | V(pj,w]) € WP,
H(p7 (plvwf)) < H(p7 (pjijz)) }

The power diagram extends the notion of Voronoi di-
agram in the sense that a Voronoi diagram is a power



diagram of equally weighted points. Notice however,
that a weighted point (p;,w?) may have no cell (or
more exactly an empty cell) in the power diagram of

WP.

2.2 Duality

In the following, a set of weighted points WP is said
to be in general position if, for any subset WP} of
k weighted points in WP, the locus of points in R¢
that have equal power with respect to all the weighted
points of WPy, is empty if £ > d+2 and has dimension
d + 1 — k otherwise. The general position assumption
on the set WP ensures that the dual complex of the
power diagram of WWP is a triangulation. We recall in
the next lemma a well known fact (see e.g. [12]):

Lemma 1 If WP is a set of weighted points of R* x
R in general position, the dual of its power diagram
is a regular triangulation. Reciprocally, any regular
triangulation in R? is the dual of a power diagram.

Sketch of the proof. Let us first define the lift map
®, mapping weighted points of R? x R to points in

Rt as follows :

® : RIxR — R
(p,w?) — @(p,w’) =(p,p* —w?)

Let WP = {(p1,w}),.--,(pn,w2)} be a set of
weighted points of R? x R in general position. The
proof of the direct claim amounts to show that a
subset WP, = {(p1,wi),..., (Pat1,wis1)} of d + 1
points in WP corresponds to a vertex in the power
diagram of WP iff the convex hull of the set of images
®(WP;) is a facet of the lower convex hull of ®(WP).
The details of this proof and the proof of the recipro-
cal claim are omitted here, they can be found in [13]. O

Lemma 1 allows us to define the regular triangulation
of WP as the dual of the power diagram PD(WP).
The regular triangulation of WP covers the convex
hull of the set P = {p1,...,pn}. However, the set
of its vertices may be a proper subset of P. A point
pi € P that is not a vertex of the regular triangulation
of WP is called a hidden vertex and its lifted point
®(p;,w?) is above the lower convex hull of ®(WP).

3. REGULAR CONSTRAINED
TRIANGULATIONS

Let us consider a given simplicial complex SC. We
say that a triangulation T strictly conforms to SC
iff any simplex of SC is a simplex of 7T'.

Let P be the set of vertices of the complex SC. The
above definition implies that any triangulation that

strictly conforms to SC includes P in its set of vertices.
Assume that we are looking for a triangulation 7" that
strictly conforms to SC and has P as set of vertices.
We may first check if the Delaunay triangulation of P
conforms to SC, in which case we are done. Otherwise
we can :

- either build a constrained Delaunay triangulation
of SC

- or look for a set of weights V in one to one cor-
respondence with P, such that the regular trian-
gulation of the resulting weighted point set WP
stricly conforms to SC.

Given a simplicial complex SC whose set of vertices
is P, the regular triangulation of a set WP of
weighted points projecting on P is called a regular
constrained triangulation of SC iff it strictly
conforms to SC.

Note that while a constrained Delaunay is not a
Delaunay triangulation (it does not fulfill the emtpy
circle property but only a weaker property), a regular
constrained triangulation is a regular triangulation.
Also notice that the Delaunay triangulation of P is
just a particular case of a regular triangulation for
which all weights are zero (or equal).

In the following, we describe how to find a regular
constrained triangulation of a simplicial complex SC
if one exists.

Lemma 2 Finding a regular constrained triangula-
tion of a stmplicial compler SC reduces to linear pro-
grammang.

Proof Finding a regular constrained triangu-
lation of SC amounts to find the weights to be
associated to the vertices of SC in this trian-
gulation. TLet W = {w},...,w2} be such a set
of weights. The regular triangulation of the set
WP = {(p1,w?),...,(pn,w2)} is the projection of
the lower convex hull LOH(®(WP)) of the set of
lifted points ®(WWP). Our goal is then to find a set of
weights W such that the projection of LCH(®(WP))

conforms to SC.

A face of SC that is not included in another face
of SC is said to be a maximal face. Let & be the
set of maximal faces of SC. For a face f of SC, we
denote by ks the dimension of f, by P; the set of
its vertices and by WPy the set of associated lifted
points. The goal is now to choose W such that for
each face f € £, there is a non vertical hyperplane H¢
in R¥*! passing through the lifted vertices S(WPy)



and supporting from below the convex hull of ®(WP).

Let Hy be a non vertical hyperplane in R whose
equation is written as follows :

Hf={(p,z)ERdXR|hf-p+z+Cf:0}

where (hf,cr) € R* x R. The hyperplane H; passes
through the lifted vertices ®(WPy) and supports
LCH(®(WP)), iff

hf'pi+wi2+cf:0 Vp; € Py (1)
hf'pi+’u)i2+0f>0 Vp; € P\ Py

A face of the convex hull of P automatically appears
in any triangulation of P. Then, if we denote by £’ the
faces of £ that are not faces of the convex hull of P,
system 1 has to be satisfied for each face f of £'. Each
equation of Hy has d + 1 unknown coefficients which
can be reduced to d — k¢ unknowns using the ky + 1
equalities of system 1. As the weights w? of points in
‘P are also unknowns of the system, we are left with a
global linear system with Ni = 37 .. (n — (ky +1))
inequations and N, = n + Zfes’ (d — ky) unknowns.

Finally, solving this linear system using linear
programming will provide, if one exists, a set
W = {wi,...,w2} of weights leading to a regular
constrained triangulation of SC. This means that if
a solution to the system exists, a regular constrained
triangulation of SC is provided, otherwise we know
that no regular constrained triangulation of SC exists.
O

Remark If the simplicial complex SC is a triangula-
tion 7', the problem amounts to decide if T" is a regular
triangulation or not. In this case, the system 1 reduces
to a power test writing

Po 1 Pa+1
po—wi pi—wi Pay1 — Wit
> 0 (2)
o Py
Po—wo - pi—Wa

where {po, p1,p2,...pa} are the vertices of a d-simplex
in T" and pgy1 is another vertex of T'. In this case, the
unknowns are just the weights {w?,...,w2}. Further-
more, it suffices to solve a system including one power
test for each pair of adjacent d-simplexes in T'. Indeed,
let ®(T") be the polyhedral surface obtained by lifting
each vertex of T'. The considered system guarantees
the local convexity of each ridge of ®(7") which, be-
cause ®(T) projects onto the convex hull CH(P) of
P, is enough to guarantee the convexity of ®(T") (as
proved in [14]).

4. CONFORMING ORTHOGONAL
COMPLEXES

As in the previous section, let us consider a given
simplicial complex SC and let P be the set of its
vertices. We say that a cellular complex strictly
conforms to SC iff each face of SC is a face of the
cellular complex.

A cellular complex is said to be orthogonal if there
is an embedding of the dual complex such that each
face is orthogonal to its dual face.

The aim of our work is to construct an orthogonal
complex that strictly conforms to SC. As the class of
orthogonal complexes coincides with the class of power
diagrams [8], our aim amounts to construct a power
diagram that strictly conforms to SC. Thus, the goal
is to define a set of sites whose power diagram strictly
conforms to SC.

Theorem 1 [f there exists a reqular constrained tri-
angulation of the simplicial complex SC, we can de-
fine a set WS of weighted points, called weighted sites,
whose power diagram strictly conforms to SC.

Proof Let P be the set of vertices of SC and let T’
be a regular constrained triangulation of SC. The
triangulation 7' is the regular triangulation of a set
of weighted points WP projecting on P. We note
PD(WP) the power diagram of the set WP which is
the dual of T'. Let WS be the set of weighted sites we
are looking for. We denote by PD(WS) the power
diagram of the set WS.

Let f be a face of SC. As above, we note ky the
dimension of f, Py the set of its vertices and WPy
the set of associated weighted points. The face f* of
PD(WP) that is dual to f has dimension d +1 — ky.
Fach point p* in f* has equal power with respect to
all weighted point in WPy, and a greater power with
respect to any weighted point in WP \ WP;. For
each face f in SC, we choose d + 1 — k; points pj
affinely independant in f* and associate to each of
them the weight: w}? = l(p}, (pi,w7)), Vpi € Py. We
thus obtain a subset WPys+ of d + 1 — ks weighted
sites in general position.

Let WS = UpescWPy+. We claim that the power
diagram PD(WS) conforms to SC. Indeed, for each
weighted point (p},w;?) € WPy«, we have:

{ ((p},w;?), (pi,wi))

= Vp; € Py
H((p;,w;-d), (phw?)) Z

0
0 Vp; € P\ Py



vertices

sites

i nci dent  edges
constrai ning i nci dent edges
dual edges

Figure 2: Defining sites

The above equations show that each vertex p; of
f belongs to the cell Cws(p;—‘,w;Z) of the power
diagram PD(WS) if the weighted site (p},wj?)
belongs to WPs«. Thus, by convexity of the faces of
a power diagram, we know that the face f is included
in the face of PD(WS) that is the intersection
of the cells Cyws(pj,w;”) of the weighted sites in
WPy«. Then, an easy induction on the dimension of
f proves that any face f of SC is a face of PD(WS). O

In practice, to define the sites of WS, we iterate on
the simplexes of SC in order of decreasing dimension.
First, we define the weighted sites linked to the max-
imal faces of SC. Then, we consider the simplexes of
lower dimensions until we reach the vertices. For each
simplex f of SC that is not maximal, we already have
the weighted sites linked to the faces including f and,
if necessary, we add the right amount of additional
sites. As an example, let us consider, in two dimen-
sions, a simplicial complex SC made up of vertices
and constraining edges. At first, for each constraining
edge e;;, we take two sites on its dual edge ej;. Subse-
quently, we consider each vertex p; of SC which may

be (cf. figure 2) :

1) a vertex incident to at least two constraining
edges,

2) a vertex incident to only one constraining edge,

3) an isolated vertex.

In the first case, we have already defined two sites on
each edge dual to a constraining edge incident to p;.
Thus, p; is ensured to belong to four cells of PD(WVS)

and to be a vertex of PD(WS). In the second case, p;
is already ensured to belong to two cells. We choose
a third site in the power diagram cell associated to p;.
In practice, the third site for p; is chosen on the dual of
some non constraining edge of 7' incident to p;. This
way, p; lies in three cells of PD(WS) and is a vertex of
PD(WS). In the last case, we choose three sites in the
power diagram cell associated to p;. In practice, those
sites are choosen on three edges of PD(WP) that are
dual to edges of T incident to p;. Again, p; lies in
three cells and is a vertex of PD(WVS).

5. APPLICATION

From above, we know how to compute an orthogonal
complex that strictly conforms to a set of contraints
forming a simplicial complex SC. In the following,
we show how this method can be used to generate
2D hybrid meshes for oil reservoir simulation. In the
case of 2D meshes, the boundaries of the cavity in the
reservoir mesh and of the wells meshes are polygons
whose edges form a 1D simplicial complex and the
above method is used to generate a conforming
orthogonal mesh filling the domain delimited by these
boundaries. This calls for two remarks.

First the conforming orthogonal complex that will
be used as transition mesh is a power diagram,
and the generating sites of such a diagram may lie
outside of their respective cells. In the oil reservoir
simulation application described here, sites are used
as discretization points where physical data are



estimated, and sites lying outside their cells are
inappropriate. Therefore we have to take into account
the additional requirement for the sites of the gener-
ated transition mesh to lie in their corresponding cells.

The second remark concerns the dimension of the
meshes considered here. Of course, oil companies re-
ally need 3D meshes of oil reservoirs to perform 3D
simulations. On one hand our method to generate a
conforming orthogonal complex works in any dimen-
sion. On the other hand it requires a simplicial con-
straining complex and 3D structured meshes of geo-
logical reservoirs are made up of hexahedral cells that
have non flat quadrangular faces with vertices that are
not cocyclic. Then in 3D meshes, the faces of the cav-
ity won’t form a simplicial complex, unless we divide
them into triangular subfaces. In that case, we re-
alize that the transition mesh will strictly conform to
the triangular constraints but not to the quadrangular
mesh faces. Therefore the generation of 3D transition
meshes for oil reservoir simulation requires more work,
and we restrict here to 2D meshes.

5.1 From meshes to the simplicial constrain-
ing complex

In the following, we deal with the construction of a
transition mesh between a reservoir mesh RM and a
well mesh WM. First, we need to create a cavity in RM
where to place WM. For this purpose, we superimpose
the two given meshes and set inactive a set of appro-
priate cells of RM. This set includes at least the cells
of RM intersected by WM. Then, the boundary of the
created cavity and the boundary of the inserted well
are two polygons whose vertices and edges form the
constraining simplicial complex SC. These successive
steps are illustrated by the following figure 3.

The next step is to find a regular constrained trian-
gulation 7" of SC, to compute its dual power diagram
PD(WP), and to choose the weighted sites of a set
WS whose power diagram PD(WS) conforms to SC.

Let us consider a site s in a power diagram PD and
its neighbouring sites s;=1..,. The site s lies in its cell
C iff for each of its neighbour s;, sites s and s; lie on
different sides of their radical axis. (The radical axis
of two sites s and s; is the hyperplan which is the locus
of points with equal power with respect to s and s;.)

For each constraining edge e € SC, we will add to WS
two sites on the edge e of PD(WP) dual to e. In the
power diagram PD(WS), the two sites choosen on e*
are neighbours and their cells share the edge e. A nec-
essary condition for the sites of WS to be in their cells
is thus that the two sites on a dual edge e* lie on both
side of e. We conclude that each constraining edge e

need to intersect its dual e*. Therefore, for each edge
e in SC with p; and p; as vertices, we add to the sys-
tem 1 the following inequations (system 3. The first
two inequations in 3 guarantee that the radical axis of
the weighted points (p;, w}) and (p;j,wj) intersects e.
Let g;; be the intersection point. The third inequation
is to be applied for any (pk,wz) € WP different from
(pi,w}) and (p;,w7) and guarantees that point g;; be-
longs to ex (that is to the common edge of the cells of

(pi,w?) and (p]-,w?) in PD(WP)).

wg —wz < (pi —pj)z
wy —w; < (pi —pj)
wp—wi < (pi—pr)? (3)

Any solution of the complete linear system (system 1
plus system 3 for each constraining edge) defines the
weights of a regular constrained triangulation such
that each constraining edge intersects its dual. How-
ever the resolution of such an optimization problem
is costly and we want to avoid this step as often as
possible. Therefore, we first compute the Delaunay
triangulation DT(P) of the vertices set P of SC. If
DT (P) conforms to SC and if all edges of SC are
Gabriel edges (which means that they intersect their
dual edge) DT (P) is an adequate regular constrained
triangulation of SC and we are done. In most cases, a
judicious choice of the cells to be set inactive leads to
such a constraining complex. However, in some spe-
cific situations, we still have to solve the linear problem
which yields a regular constrained triangulation of SC
such that each constraining edge intersects its dual. If
no regular constrained triangulation of SC exists, no
conforming power diagram can be computed.

5.2 Construction of the transition mesh

Let T be a regular constrained triangulation of SC
such that each constraining edge intersects its dual
edge. Let PD(WWP) denotes the dual power diagram
of T and let PD(WS) be the constrained power

diagram we want to construct.

First, we define a set of site WS using the method
described earlier and presented as an example. For
each constraining edge e € SC, we define two sites on
its dual edge in PD(WWP) with the constraint that one
site has to be defined on each side of e. Then, as SC
is made of two polygons, we only have to deal with
the first case illustrated in figure 2. Each vertex of SC
is already associated with four sites and therefore is a

vertex of PD(WS).

Once sites have been defined, their power diagram
PD(WS) strictly conforms to SC and for each con-



Figure 3: Creation of a cavity

Figure 4: Moving a site

straining edge e, its two associated sites are on both
of its sides. But this last property is not guaranteed
for an edge e’ of PD(WS) that is not an edge of SC
and a site may be outside its cell. In that case, two
sites are on the same side of e’. Then, we will move
one or the other site along its definition edge in order
to bring the edge e’ back between the two considered
sites (cf. figure 4). This processing will be executed
until each site is in its cell (which is always possible).

In the end, PD(WS) is a power diagram that strictly
conforms to SC, and each site belongs to its cell. Then,
the cells of PD(WS) that covers the space delimited
by the boundaries make up the transition mesh be-
tween RM and WM and we finally obtain the global
hybrid mesh.

5.3 Results

Given a reservoir mesh and wells meshes, we have
presented how to compute transition meshes that es-
tablish the proper connections. The method has been
experimented and tested using the Computational

Geometry Algorithms Library CGALL.

Thttp://www.cgal.org/

As a first illustration, figure 5a shows the hybrid
mesh that has been computed on the data presented
in figure 3 : a radial well mesh inserted in a CPG
reservoir mesh. Our method deals with a set of
vertices and edges extracted from the boundary of
the cavity and the boundary of the well. Therefore,
we can handle different kinds of wells or/and several
wells in a unique cavity. Figure 6 illustrates the
example of a horizontal mesh and a vertical mesh
inserted in a unique cavity in a reservoir mesh while
a vertical mesh is inserted in an other separate cavity.

In a same way, we can deal with faults represented by
a sequence of segments and inserted in a cavity of a
CPG reservoir mesh. The slight difference lies in the
presence of vertices incident to a single constraining
edge (ends of the fault). For these vertices, the sites
defined for the constraining edges are not sufficient.
Each extremity p is associated with two sites and we
need to define a third site as described in the general
method (see Section 4.).

A first step toward 3-dimensional meshes is to generate
2%—dimensional meshes. First, we compute a global
hybrid mesh in dimension two on a plane. Then, we
project this 2D generated mesh onto geological sur-
faces. The interpolations between two consecutive sur-
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Figure 6: A horizontal mesh and a vertical mesh inserted in a unique cavity

faces lead to the final 2%—dimensiona1 mesh. An exam-
ple is presented figure 7.

6. CONCLUSION

In this paper, we have presented the notion of regu-
lar constrained triangulation, a regular triangulation
that strictly conforms to a given simplicial complex
SC and has no extra Steiner vertex. Then we have
shown that if such a triangulation exists for SC, an
orthogonal complex that strictly conforms to SC can
be computed and an appropriate technique has been
exhibited. In a practical way, we use this method to
generate a new kind of 2D hybrid meshes dedicated
to oil reservoir simulation. The method can also yield
2%—dimensional meshes. As noticed in the second re-
mark of section 5., the generation of real 3D hybrid
meshes for oil reservoir simulations does not quite fit
in the framework presented here because the set of
constraints for such a prpblem does not form a simpli-
cial complex. Further work is actually in progress to
address this particular problem.
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