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Abstract 

This paper presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex and hex-

dominant meshes of 3D assembly models.  LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of 

the 3D domain to decompose complex 3D domains into simpler domains called Tracks.  Tracks in 3D are similar to tunnels with 

no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary.  

These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the 

boundary normal with any irregular nodes restricted to the MA, and sharp boundary feature preservation.  The algorithm has been 

tested on a few industrial CAD models and hex-dominant meshes are shown in the result section.  The paper also describes how 

this algorithm can be extended to produce all-hex meshes in general geometries. 
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1. Introduction 

Many computational simulations such as non-linear solid mechanics require all-hex meshes.  Currently, there is 

no ideal automatic hex meshing algorithm to mesh general solids or assemblies with commonly desired features in a 

hex mesh as this is a very challenging problem.  In most cases, users have to resort to using meshes of suboptimal 
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quality or spend a significant amount of time generating them. 

In complex cases, the creation of a desirable hexahedral mesh 

may take months even for an expert user. This hex mesh 

generation process tends to dominate the overall cost of 

numerical simulations. Therefore, improvements in the hex 

meshing technology are of significant importance to the 

computational simulation community.  

 The goal of LayTracks3D is to generate hex meshes of 

solids and assembly models with desirable features such as 

boundary sensitivity, orientation insensitivity, sharp feature 

preservation, high-quality mesh, and the handling of general 

solids.  The mesh generator should have the ability to generate 

a variety of meshes by controlling sizing and anisotropy, 

generate geometry adaptive meshes, provide fast remeshing during FEM iterations, and should be scalable.  

This paper is an extension of the all-quad meshing algorithm proposed by the author called LayTracks [1] for 3D 

solids.  Section 2 gives an overview of the original 2D LayTracks algorithm.  Section 3 reviews the literature on the 

method of decomposition and advancing front methods as LayTracks3D combines the merits of these two methods.  

Section 4 gives an overview of LayTracks3D and the rest of the paper discusses extensions of LayTracks3D for 

assembly meshing and all-hex meshing.  The results section shows hex-dominant meshes on a few industrial models 

as the all-hex meshing is not fully implemented at this time.  

2. Overview of LayTracks 

As it is easier to understand the algorithm in 2D, here we quickly recap the original 2D LayTracks [1].  

LayTracks works analogous to the formation of railway tracks by laying rails on the ground to form a set of non-

intersecting connected tracks on surfaces (see Figure 2(e)); hence, the name LayTracks.  This algorithm uses a 

skeletal representation of the input domain called Medial Axis Transform (MAT) [2,3,4] which is a mathematically 

well-studied skeletal representation. LayTracks is built on the mathematically sound MA and guarantees many 

desirable properties such as orthogonality of mesh elements at the boundary, irregular nodes restricted at farthest 

distance from the boundary, an automatic conformal mesh at the interface of surfaces, and an all-quad mesh.  

Figure 2(a) shows an assembly of surfaces in 3D.  Figure 2(b) shows the MA and the map from each MA segment 

to the corresponding boundary segment.  The points on the MA where more than two segments meet are called 

Branch Points.   These points represent the critical singularity points in the interior of the domain.   Figure 2(c) 

shows the decomposition of the original domain, i.e., an assembly of surfaces, into a set of connected simpler 

domains using the branch points.  Using the map, the branch point is connected to its corresponding tangent points 

on the boundary via line segments (see Figure 2(e) & Figure 1).  These line segments propagate from one surface to 

the other either from the MA to the boundary or from the boundary to the MA using the map.  The set of these 

connected line segments is called a Rail (see Figure 2(c)).  Figure 2(e) highlights one of the rails in red, which is 

mathematically defined as a bi-partite graph [5].  Each line segment of a rail (i.e. edge of the bi-partite graph) has 

two end points: one on the MA and the other on the boundary.  Note that rails branch at the MA branch points and 

they enter and exit the boundary orthogonally.  The region between two adjacent rails’ paths that pass through at 

least one branch point is called a Corridor  (see Figure 2(c)).  

 Note that the MA skeleton representation reduces the surface meshing problem into curve meshing.   The next 

step is propagating the rails across the surfaces inside each corridor as the MA curve segments are meshed by 

inserting nodes based on the input mesh size.   Uniform node spacing on the MA (see Figure 2(d)) generates a 

uniform mesh and a varying node spacing based on the radius of the medial ball generates a geometry-adaptive mesh 

[6]. Figure 2(e) shows all the rails generated using uniform node spacing on the MA segments of each corridor.  The 

region between two adjacent rails’ paths inside each corridor is called a Track (see Figure 2(e)). 

A set of connected tracks is a much simpler domain to mesh compared to the input surfaces.  First the rails are 

meshed and then the quad elements are built inside each track.  Note the rails are symmetric on either side of the MA 

as they are line segments connecting the center of the maximal ball to the tangent points as shown in Figure 1.  

 

Figure 1 Track generated using MA map 
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Therefore, the total number of nodes on the two radii is always even.  Thus, a track will be bounded by an even 

number of edges (i.e., even number of edges on the two rails and two boundary edges). This provides a theoretical 

guarantee for an all-quad mesh. 

 

   

(a) Set of surfaces (b) MA and map (c) Corridors 

 

 

 

(d) Mesh on corridor’s MA (e) Tracks inside the corridors (f) Quad mesh on set of surfaces 

 

Figure 2 Overview of quad meshing via LayTracks 

3. Literature Review 

Various hex meshing algorithms have been proposed in the literature; however there is no automatic all-hex 

meshing algorithm that gives all the desirable properties such as boundary sensitivity, orientation insensitivity, high 

quality mesh, sharp feature preservation and handling of general solids.  Every algorithm has its own pros and cons.  

In the paragraphs below, the method of decomposition and advancing front methods are discussed as they are 

relevant to LayTracks3D. 

The method of decomposition works by decomposing a complex 3D domain into simpler meshable subdomains. 

One of the most practical approaches for generating all-hex meshes involves decomposing a complex solid into 

sweepable, mappable, or submappable subdomains, and then meshing these subdomains. This technique generally 

gives a high-quality mesh.  The main disadvantage of this method is that it requires manual geometry decomposition, 

which is a very tedious task, and not trivial on complex models even for experts.  This is a major bottleneck of this 

type of decomposition method.   

Another decomposition-based method uses the MA.  Here a quick review of the MA-based 3D meshing 

algorithms is presented. Price and Armstrong [7,8] described a subdivision yielding one subregion for each medial 

 

Rail is Bi-partite Graph
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vertex, medial edge and medial face. The subregions are subsequently meshed by mid-point subdivision. This 

method can generate poor quality elements, which are not useful for simulation.  Pete Sampl [9] presented a semi-

structured meshing algorithm that generates mixed meshes with hex percentage ranging from 10.6% to 47%.  It does 

not consider assembly models and therefore does not address respecting boundary imprints and obtaining conformal 

meshes. Makem et al. [10] used the MA for detecting thin and thick regions while generating a hybrid mesh, i.e., 

swept meshes are generated on the thin-sheet and long slender regions with unstructured tet meshes on the rest of the 

domain.  

Another decomposition-based method uses frame fields to design high quality hexahedral meshes. However, the 

automatic generation of frame fields that are useful for generating meshes of good quality is a complex problem. The 

generation of 3D frame fields is more complex than its 2D counterpart called cross fields; thus, preventing direct 

extension of most 2D methods to 3D.  Vyas and Shimada [11] made the first attempt to generate such a frame field 

using tensor metrics.  The tensor field is first initialized at the boundary of the solid and then interpolated in the 

interior in an advancing front manner. This method generates a hex mesh at targeted regions and a hex-dominant 

mesh in the rest of the domain.  The eigenvalues of the metric order the different directions of the tensor field. As a 

result, smoothing and interpolation operations treat the frame field as a set of 3 different direction fields, preventing 

the intertwining naturally occurring in the fields. Moreover, the regions surrounding umbilics, where several 

eigenvalues are starting to be identical, are highly unstable, and make the resulting tensor field unusable in these 

regions.   

To overcome these problems, a method based on an energy formulation has recently emerged [12,13,14]. The 

energy formulation ensures that the order in which the directions of a frame are considered have no impact. Using 

the gradient of this energy, it is then possible to globally smooth the frame field.  The initial field is computed using 

a given crossfield on the surface that is transformed into a 3D frame field on the surface by adding the surface 

normal. The smoothing operations proposed are a massive step toward in the generation of frame fields.  However, 

poor initial singularity locations cannot be improved through smoothing, as these only look for the closest local 

minima of the energy.  The results are also very dependent on the input cross field and it is not clear if the singularity 

graph can always guarantee all-hex meshes. 

Kowalski [15] proposed a method of generating frame fields, which does not depend upon the input surface 

crossfield.  By computing streamlines of interest, a skeleton is obtained that allows the partitioning of the domain 

into multiple blocks that can be easily meshed through structured mesh generation methods. The biggest drawback 

of this method is that there is no guarantee that a skeleton generated from the frame field can split the domain into a 

block-structured mesh in 3D.  

Another popular approach is advancing front methods because of their success in 2D.  The extension of 2D 

advancing front all-quad meshing algorithm paving [16] to 3D plastering [17] has very limited success. Plastering 

starts with a pre-meshed boundary and places hex elements in an advancing-front manner, progressing toward the 

center of the domain.  A heuristic set of procedures for determining the order of element formation is defined. 

Unconstrained paving and plastering [18,19,20] extend respectively the paving and the plastering algorithms by 

starting from a domain whose boundary is not pre-meshed. They use a background simplicial mesh to guide the 

placement of entire layers of cells at a time, reducing the frequency at which unmeshable voids appear.  Plastering is 

automatic, produces high quality elements at the boundary, preserves sharp features, and handles general solids.  

However, the major drawback of this method is that it almost always contains interior voids that cannot be meshed 

through heuristics and generates poor quality elements at the interior. 

 LayTracks3D combines the merits of these two popular mesh generation techniques, the method of 

decomposition and the advancing front methods. While the MAT has been used for domain decomposition before, 

this is the first attempt at using the MAT for the robust subdivision of a complex 3D domain into a well-defined 

simpler sub-domain called "Tracks".  As the MAT exists where the advancing fronts collide, the hex fronts 

propagated from the boundary are terminated without complex interference checks.  Thus, LayTracks3D has the 

promise of generating high quality, boundary sensitive, orientation insensitive, sharp feature preserving hex meshes 

on general solids without any manual decomposition.   
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4. Overview of LayTracks3D 

LayTracks3D works analogous to 2D LayTracks [1] in decomposing a general 

solid/assembly into tunnel like tracks in 3D.  Note that in 2D we discussed meshing 

an assembly of surfaces, but here we discuss meshing a single solid instead of an 

assembly of solids for clarity.  Assembly meshing is discussed later in Section 6.   

Figure 3 shows the overview of LayTracks3D.  Step 1 is to generate a 3D medial 

surface (see Figure 4(b)) and build data structures to hold a 2-way map from the MA 

to the B-Rep and the B-Rep to the MA.  Establishing the map is the most critical step 

and subsequent steps depend heavily on the 2-way map. 

In Step 2, the non-manifold MA junction curves, which represent critical 

singularities of the 3D shape are used to decompose the solid into corridors.  First, 

the MA junction curves are meshed.  Then, rails are propagated from mesh nodes to 

define critical partition surfaces that define simpler meshable sub-regions called 

corridors (see Figure 4(c)).   

In Step 3, the 3D meshing is reduced to 2D meshing on the MA (see Figure 4(d)).  

Meshing all the surfaces of the MA inside each corridor will cover the entire 3D 

solid.  LayTracks3D is not an inside out method, i.e., as an alternative, one can mesh 

the boundary surfaces of corridors instead of the MA.  It is quite typical to have a 3-

manifold medial curve at convex vertices.  It is recommended to have a layer of tri 

elements along the 3-manifold MA edge in order to obtain a single hex element by combining six tets.  This is 

discussed in detail in Section 7 as shown in Figure 11. 

 Step 4 involves subdividing the corridor into tracks, which look like tunnels with quad/tri cross sections.  First, 

rails are propagated at every node of the mesh on the MA. Second, tracks are automatically formed using the quad 

mesh topology on the MA. Unlike a rail, tracks do not branch. Tracks either form a closed tunnel or a tunnel with 

only one entry and only one exit.   

In Step 5, tracks are meshed from the boundary towards the MA in an advancing front manner (without any 

interference checks) to achieve a boundary sensitive mesh.  First rails are meshed using the defined mesh size.  Next, 

hex elements are built using the nodes of the rails. At the MA, two wedges can be combined into a hex (e.g. at 

convex edge) or six tets can be combined into a hex (e.g. at convex vertex).  Non-hex elements may arise at the MA. 

Section 7 gives more details on how to avoid non-hex elements at the MA to achieve all-hex meshes. 

5. Characteristics of LayTracks3D 

As LayTracks3D is a new approach, some of the characteristics of the proposed method are highlighted below: 

 Handle General Solids: LayTracks3D can decompose any general solid into simpler tracks using a 

mathematically well-defined MA skeletal representation. 

 Boundary Sensitive: Rails/tracks cut through the boundary/interface orthogonally at tangent points giving a 

boundary sensitive structured mesh along the surface normal. 

 Orientation Insensitive: MAT is independent of the input model orientation and hence the mesh is orientation 

insensitive. 

 Dimension Reduction: MAT reduces hex meshing to quad meshing on the medial or the boundary surface of 

corridors. 

 Feature Preservation: All the sharp boundary features are preserved in the corridors, tracks, and the final 

mesh. 

 Sizing and Anisotropy Control: The size/anisotropy specified on the boundary surfaces can be mapped to 

medial surfaces, which controls the size/anisotropy of hex elements in two directions.  Node spacing along rails 

controls the size/anisotropy in the third principal direction of a hex element.  Note that tracks find the shortest 

path and hence limit the scope of specified size to a local region, which is quite hard to do with hex meshes. 

 

 

Figure 3 LayTracks3D 

overview 
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(a) Input solid (b) Medial surface (c) Corridors 

   

(d) Mesh on medial in corridors (e) Tracks in 3D (f) Hex dominant Mesh 

Figure 4 Overview of LayTracks3D 

 

 Conformal Mesh: The 2-way map projects and resolves all the boundary imprints on the medial.  Corridors 

then cut the interface of the assembly orthogonally and give an automatic conformal mesh respecting imprints.  

More explanation on assembly meshing is given in Section 6. 

 Geometry Adaptive: The radius function of the MAT and its gradients can be used to control element size, 

anisotropy, and orientation.  Rails can be used as NURBS control points to generate non-linear tracks[5].   

 Fast Remeshing/Refinement: Recomputing  the MAT or corridors is not required for remeshing/refinement as 

they depend only on geometry but not mesh size. Global or local remeshing can be performed by remeshing the 

medial surfaces of the corridors with a newer mesh size. 

 Mesh Morphing:  Old meshes can be morphed easily to new deformed geometry whenever the MA topology 

does not change.  
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 Parallel Friendly: Decomposition-based methods are generally parallel friendly.  Meshing rails and tracks can 

be easily parallelized. 

 Potential All-Hex: LayTracks3D is based on the strong mathematical foundation of the MAT.  Section 7 

discusses extension of LayTracks3D for all-hex meshing.  

6. Extension to Assembly Meshing 

Meshing an assembly model is more challenging than meshing a single solid.  While meshing a single solid, the 

solid is decomposed into subdomains called corridors using only the non-manifold MA curves, which are critical 

singularities located in the interior of the solid.  While meshing an assembly, even the imprinted boundary curves 

need to be taken into account in order to obtain a conformal mesh at the interface of the solids.  

Figure 5(b) shows a cuboidal solid of an assembly with imprinted curves on the top, left, right and front surfaces.  

In is not trivial to get a hex mesh of this simple cuboidal solid using existing hex meshing algorithms.  Even though 

grid-based algorithms do a better job on solids aligned along Cartesian axes, they fail to respect the boundary 

imprints. Sweeping-based algorithms require manual decomposition and it is not trivial to decompose this simple 

cuboid into sweepable subregions.  For example, sweeping the rectangular imprint on the right surface will intersect 

with sweeping the semicircle from the front, hexagon from the left and semi-hexagon from the top.  Even with 

plastering, imprinted surfaces on the cuboid make it very difficult to close the inner voids.  

One of the original contributions of LayTracks3D is that the MA is used to resolve all boundary imprints coming 

from all directions.  Figure 5 shows the overview of meshing the cuboidal part of an assembly model via 

LayTracks3D.  As the MA is a lower dimensional skeleton representation of the 3D solid, all the boundary imprints 

are mapped onto the MA (see Figure 5(c)). The MA is then subdivided into different patches not only by non-

manifold MA curves but also by all boundary imprints coming from all directions.   

    It is quite trivial to subdivide a 3D solid into corridors using the map after the MA has been subdivided into 

patches using imprints.  Note that the corridors automatically cut the imprints orthogonally thus giving conformal 

mesh at the interface.  Recall that the sweeping based manual decomposition propagates globally and thus intersects 

with other sweeps.  Corridors are similar to sweepable regions but they do not propagate globally.  Corridors 

automatically find the shortest path to enter and exit a solid orthogonally.  Figure 5(e) shows the tracks respecting all 

boundary imprints in front, top, right, and left surfaces. Figure 5(d) and Figure 5(f) show the cross section of the 

tracks entering the semicircle at the front surface.  These tracks then take a right turn at the MA and exit 

orthogonally at the rectangle on the right surface (see Figure 5(f)).  Thus, a conformal mesh has been generated by 

respecting all the imprints and by ensuring the orthogonality condition at the boundary. 

 

  
 

(a) Assembly Model (b) Solid with boundary 

imprints 

(c) MA junctions & boundary 

imprints 

  
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(d) Cross section of mesh on 

MA 

(e) Tracks respecting boundary 

imprints 

(f) Conformal mesh at 

interface 

Figure 5 Overview of LayTracks3D on assembly model 

7. Extension to All-Hex Meshing 

LayTracks3D is built on the strong mathematical foundation that is inherent in the MAT.  Every 3D solid has a 

unique MA and that MA is a continuous rich skeleton representation of the 3D solid.  The LayTracks3D algorithm is 

based heavily on the uniqueness and continuity of the MAT as given by the following lemma [21]. 

 

Lemma 1.0 Uniqueness and Continuity of Mapping to MAT 

Let A be an n-dimensional compact sub-manifold of Rn and let MA(A) be its medial axis.  Let P be an open subset 

of A which is G1 and piecewise C2 continuous. Then for every point p  P there is one and only one maximal ball 

touching p. Furthermore, the function M: P  MA(A), which maps each point p  P to the center of its maximal 

ball, is continuous. 

 

The mapping function M: P  MA(A) in the above lemma connects a point p on the boundary to maximal ball 

center Mp as shown in Figure 1.  This lemma is central to LayTracks3D in (1) creating corridors by connecting 

branch points with its tangent points (see Figure 4(c)) to get high quality boundary oriented elements, (2) creating 

tracks inside the corridor by placing rails using a 1-to-1 map from the boundary to the MA and from the MA to the 

boundary thus guarantying no branches inside the tracks (see Figure 1), (3) projecting imprints from all directions 

onto the MA (see Figure 5(c)), and (4) cutting the assembly interface orthogonally respecting all imprints to 

guarantee conformal mesh (see Figure 5(d)).  Therefore, all the major steps of LayTracks3D are very robust as they 

are derived from M: P  MA(A).  

 

    Let us now prove the following two conditions for all-hex meshing: 

Condition 1: A general solid can be decomposed into a set of connected quad cross-section 3D tracks 

Condition 2: A quad cross-section 3D track can be meshed with all-hex elements  

Therefore, if these two conditions can be met, then any general solid can be meshed with all-hex elements using 

LayTracks3D.  The sections below show how these two conditions are met theoretically, although a full 

implementation is not completed at this time. 

 

Condition 1: Decompose General Solid into Set of Connected Quad Cross-Section 3D Tracks  

The quad mesh on the MA represents the 3D track decomposition via the mapping function M: P  MA(A).  

Thus, completing conformal quad meshing on the MA will guarantee connected 3D track decomposition.  Note that 

a quad mesh on the MA may not always give tracks with quadrilateral cross section everywhere.  This is because the 

map may not be 1-to-1 everywhere. Note that the above lemma assumes that the boundary is G1 continuous (i.e. 

tangent direction is continuous) and piecewise C2 continuous (i.e. second derivatives are continuous).  In practice, at 

concave edges/vertices, where the map is 1-to-N, the statement  “every point p  P there is one and only 
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one maximal ball touching p” does not hold.  

Therefore, a 1-to-1 map between p and Mp cannot be 

guaranteed at concave edges/vertices.  

    Solution for concave edge/vertex, where the map 

is 1-to-N is shown in Figure 6.  One of the solutions 

is to perturb the 1-to-N map to obtain a 1-to-1 map 

using smoothing operation.  The multiple coincident 

points at the concave vertex will get spread out 

locally. Note that the orthogonality condition will be 

lost locally at the concave regions.  

The solution for the finite contact where the map 

is N-to-1 is shown in Figure 7.  Figure 7(a) shows a finite contact case such as a cylinder or sphere where multiple 

points on the boundary map to a single point on the MA.   This single solid problem is transformed to an assembly 

problem by introducing a core at the N-to-1 map of the MA regions.  Figure 7(b) shows a cuboidal core at the center 

of the sphere.  Note the change in the MA shown in purple.  The MA, which was a point at the center of the sphere, 

now becomes a sheet in between the outer sphere and inner cuboidal core.  Thus we have removed the N-to-1 map 

throughout the domain.  Note that there exists a 1-to-N map at the concave vertices of the outer sphere region (see 

Figure 7(b)).  As discussed in the above paragraph, a 1-to-N map at the concave regions can be transformed to a 1-

to-1 map by spreading the coincident nodes at the concave vertex (see Figure 7(c)).  Thus the N-to-1 map is 

transformed  completely to a 1-to-1 map and an all-hex mesh can be generated on the sphere.   

 

Figure 8 Types of tracks in 3D 

` 

  

Figure 6 1-to-N transformed to 1-to-1 map a concave vertex 

 

Figure 7 N-to-1 transformed to 1-to-1 

 

            

1-to-1 1-to-1 1-to-1 

1-to-1 1-to-N 1-to-N 1-to-N 1-to-N 1-to-N 

1-to-N 1-to-N 1-to-N N-to-1 N-to-1 

N-to-1 N-to-1 

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

(a)N-to-1 (b)1-to-N (c)1-to-1 (d)Tracks (e)Mesh 
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Figure 8 shows all possible types of tracks that can arise from the 1-to-N and N-to-1 maps.  As discussed in the 

above paragraphs, 1-to-N and N-to-1 maps can be transformed to a 1-to-1 map. The 1-to-1 map then satisfies 

Condition 1 and quad cross-section tracks (as shown in the first image of Figure 8) can be generated on general 

solids. 

 

Condition 2: Mesh a Quad Cross-section 3D Track with All-Hex Elements  

Let us now examine Condition 2, which requires us to mesh every quad cross-section 3D track with all-hex 

elements.  LayTrack3D first meshes all the rails and then meshes all the tracks.   The hexes are built in an advancing 

front manner inside each track, i.e., hex elements are built from the boundary towards the interior MA.  

Here the author would like to point out why the current implementation discussed in Section 4 does not guarantee 

an all-hex mesh and how to overcome this limitation to achieve an all-hex mesh.  In the current implementation non-

hex elements can arise at the MA when the hex elements are built inside the track in an advancing front manner. 

This is because LayTrack3D described in Section 4 has no control on the number of intervals present in the rails of 

the tracks.  The quad mesh on the medial shown in Figure 4(d) is randomly generated using the Paving algorithm for 

a given mesh size without any special constraints.  Paving is an unstructured meshing algorithm and the quad nodes 

can exist in an unstructured manner on the medial surface.  Then the rails are generated from these quad nodes. Note 

that the rails on either side of a quad node will have the same length as the radii of a maximal ball (see Figure 1).  

The rail length is then divided by the desired mesh size to set the intervals on the rails.   Thus an even number of 

intervals on the rails of a track is set automatically without any special attention.    

In order to obtain an all-hex mesh inside a quad cross-

section track, Case 1: all four rails must have the same 

intervals or Case 2: two rails must have 2N intervals and 

the other two rails must have 2(N+1) intervals.  With 

Case 1, all hex elements can be easily built on equal 

interval rails and with Case 2, two wedges at the MA can 

be merged to form a hex as shown in Figure 9.  

The big question is how to generate a mesh on the 

medial surface such that all tracks satisfy either Case 1 or 

Case 2? In order to satisfy Case 1 or Case 2 in every 

track, the isocontours of the radius function of the MA 

have been utilized.  Figure 10(b) shows isocontours of 

the radius function of the MA obtained for mesh size 

increments. Isocontours and non-manifold MA curves 

split the MA into different regions/segments as shown in 

Figure 10(c).  Figure 10(c) also shows the underlying facets of these MA segments.  Figure 10(d) shows the quads 

on the MA that represent the quad cross section tracks in 3D.  The intervals on a rail generated at a node can be 

easily determined by knowing the isocontour number (see Figure 9).  Figure 10(d) shows two regions bounded by 

only one isocontour and non-manifold MA curves. These regions can be meshed using unstructured quad meshing 

algorithm such as paving.  All the rails at the quad nodes of this an unstructured mesh will have the same intervals, 

thus satisfying Case 1.   The rest of the region is bounded by two isocontours N and N+1 and non-manifold MA 

curves.  A quad in this region is shown in Figure 9.  Two quad nodes lie on isocontour N and the two rails originated 

from these two quad nodes will have 2N intervals.  Similarly, the other two quad nodes lie on isocontour N+1 and 

the two rails originated from these two quad nodes will have 2(N+1) intervals. Thus, the track satisfies Case 2.  

Thus, the quad mesh shown in Figure 10(d) will give an all-hex mesh by satisfying either Case 1 or Case 2 in every 

track. 

In order to improve the hex quality at 3-manifold MA curves (MA curve incident on three MA surfaces), a layer 

of tri elements are generated all along the 3-manifold MA curve as shown in Figure 10(d).  Figure 11(a) shows a 3-

manifold MA curve at a convex vertex.  Figure 11(b) shows a layer of tri elements all along the 3-manifold MA 

curve. The tracks corresponding to the tri will have triangular cross-section.   Figure 11(c) shows how six tets form a 

hex at a 3-manifold MA edge and two wedges form a hex along the two tri cross section tracks.  Figure 4(d) and 

Figure 4(f) show that having a tri along the 3-manifold MA curve will result in a high quality hex elements at the 

 
Figure 9 Merge two wedges to get all-hex 
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convex corner.  Figure 5(e) and Figure 5(f) show that having quads along the 3-manifold MA curve will often result 

in poor quality elements at the convex vertex.  However, using tri elements will give high quality hex elements that 

are conformal with the hex elements of the adjacent quad cross section tracks.  

 

  

(a) Non-sweepable solid                                                         (b) Isocontours of MA 

 
 

(c) MA segments 
(d) Meshing the MA using isocontours to obtain desired 

number of intervals on rails. 

Figure 10 Meshing the MA using isocontours of radius function to achieve all-hex mesh. 

 

The final all-hex mesh topology can be visualized using the quad mesh topology on the MA. An unstructured hex 

mesh containing irregular nodes will exist in the tracks originating from the unstructured quad mesh.  Figure 10(d) 

shows the unstructured quad mesh in the region bounded by one isocontour.  In Figure 10(d), the regions bounded by 

two isocontours have a structured quad meshes.  Therefore, the hex mesh originating from this quad mesh will have 

a structured mesh. 
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(a) All-hex at 3-manifold MA 

curve 

(b) Top view of tri elements 

along 3-manifold MA curve 

(c) Six tri-cross section tracks 

form an hex at MA edge 

 

Figure 11 All-hex mesh at 3-manifold medial edge connecting a convex vertex 

 

 

  

(a) Solid with holes (b) Mesh on MA inside corridors 

 

 

(c) Tracks in 3D (d) Mesh cross section 

Figure 12 Meshing a solid containing two through holes 
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8. Results  

LayTrack3D has been implemented in CUBIT [22] using the CADFix [23] medial object library.  Note that the 

generation of the 3D MA itself a challenging problem. The proposed method relies on the availability of a robust 

MA and does not do any cleanup of MA.  The author is actively working on LayTracks3D and this section shows the 

current results obtained on some industrial models.  The time taken to compute the MA of the below models is on 

the order of minutes.  It takes about half a minute on a MacBook Pro for the rest of the process which includes 

importing the CAD model, importing the MA model, meshing the MA, building corridors, building tracks, meshing 

tracks, and exporting the mesh.  This computation time is significantly lower than the user time required in methods 

requiring manual decomposition for hex meshing. 

Currently, hex-dominant meshes can be generated by meshing the MA using the Paving algorithm [16] as shown 

in Figure 4.  Generation of the isocontours discussed in Section 7 has been implemented; however, the quad meshing 

on the MA using the isocontours to achieve all-hex meshes is not yet fully implemented. Therefore, in this section 

only the hex-dominant meshes are shown, which by itself is a significant step forward in the MA-based hex meshing 

research.  While hex-dominant meshes are not suitable for all applications, numerous numerical simulations can use 

hex-dominant meshes [23]. 

 

 

  

(a) Thin-wall solid (b) Mesh on MA inside corridors 

 
 

(c) Tracks in 3D (d) Mesh cross section 

Figure 13 Meshing a thin walled solid 
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(a) Assembly (b) Imprints on the boundary of a solid 

  

(c) Imprints on MA (d) Corridors 

  

(e) Tracks (f) Final mesh 

Figure 14 Meshing an assembly model with imprinted interface 

 

Figure 12(a) shows a typical industrial solid containing through holes, sharp features, fillets, concave regions, and 

thin-thick cross sections.  Figure 12(b) shows the corridors obtained by propagating rails (shown in red) from the 

non-manifold MA junction curves, which represent critical singularities.  The MA is meshed using the paving 

algorithm with a layer of tri elements along the 3-manifold MA curves touching convex vertices.  Figure 12(c) 

shows the tracks, which look like tunnels in 3D and are much simpler to mesh than the original solid.    An 

advancing front method has been used to mesh the tracks by building high-quality (near cubical shape) hex elements 
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from the boundary towards the MA.  Figure 12(d) shows the hex-dominant mesh containing 10,260 hex elements 

and 536 non-hex elements, i.e., 5.2% of elements are non-hex elements. 

The proposed method can handle thin-walled solids irrespective of the relative scale between the thin and the 

thick regions.  Figure 13(a) shows a typical industrial thin-walled solid.   Figure 13(d) shows that the final mesh is 

always aligned orthogonal to the boundary.  Note that currently we get a minimum of one layer of hex on either side 

of the MA.  Figure 13(d) shows the mesh cross section containing two layers of hexes at thin walls.  The hex-

dominant mesh contains 14,104 hex elements and 185 non-hex elements, i.e., 1.3% of elements are non-hex 

elements.  

Figure 14(a) shows an assembly model with eight parts and Figure 14(b) shows the thick cylindrical plate in 

transparent mode with imprints from adjacent parts.  The top surface contains a rectangular imprint with two inner 

circles.  The bottom surface contains two rectangular imprints and the lateral surfaces of the plate contain three 

circular imprints.  These disconnected imprints - which are located on different surfaces spatially - are resolved by 

transforming them from the solid’s boundary to the MA using the map.   Figure 14(c) shows all the imprints on the 

MA.  Corridors are then generated using the imprints and the non-manifold junction curves of the MA.  Note that the 

corridors pass through the boundary imprints orthogonally and are simpler subdomains with a 1-to-1 map.   Figure 

14(e) and Figure 14(f) show tracks and the hex-dominant mesh respectively.  As the mesh respects the boundary 

imprints, other schemes such as sweeping can be used on simpler parts of the assembly.  The mesh quality at convex 

vertices can also be further improved by having a layer of tri elements along 3-manifold MA curves as shown in 

Figure 12 & Figure 13.   

9. Conclusion 

This paper presents an extension of LayTracks to generate hex-dominant meshes of general solids using the 

MAT.  LayTracks3D combines the merits of two popular mesh generation techniques, the method of decomposition 

and the advancing front methods. The algorithm first decomposes any general solid into simpler sweepable like 

regions called corridors using the internal critical singularities, i.e., non-manifold MA junction curves and the 

boundary imprints.  Next, the corridors are further subdivided into simpler tunnel like regions called tracks.  The 

tracks are then meshed in an advancing front manner by laying hex elements from the boundary towards the MA 

without any interference checks. The algorithm generates hex-dominant meshes on general solids and assemblies 

with desirable features such as boundary sensitivity, orientation insensitivity, sharp feature and imprint preservation, 

and high element quality without any manual decomposition/interaction.  Work is under way to guarantee all-hex 

meshes using isocontours of the MA radius function.  In the near future, the generated meshes will be validated 

using a non-linear solid mechanics analysis codes. 
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